
DeepZipper: A Novel Deep Learning Architecture for
Lensed Supernovae Identification

Robert Morgan
Physics Department

University of Wisconsin-Madison
Madison, WI 53706

robert.morgan@wisc.edu

Brian Nord
Fermi National Accelerator Laboratory

Batavia, IL 60510
nord@fnal.gov

Keith Bechtol
Physics Department

University of Wisconsin-Madison
Madison, WI 53706
kbechtol@wisc.edu

Jimena González
Physics Department

University of Wisconsin-Madison
Madison, WI 53706

sgonzalezloz@wisc.edu

Abstract

The identification of gravitationally lensed supernovae in modern astronomical
datasets is a needle-in-a-haystack problem with dramatic scientific implications:
discovered systems can be used to directly measure and resolve the current tension
on the value of the expansion rate of the Universe today. We hypothesize that the
image-based features of the gravitational lensing and the temporal-based features
of the time-varying brightness are equally important in classifications. We therefore
develop a deep learning technique that utilizes long short-term memory cells for
the time-varying brightness of astronomical systems and convolutional layers for
the raw images of astronomical systems simultaneously, and then concatenates the
feature maps with multiple fully connected layers. This novel approach achieves a
receiver operating characteristic area under curve of 0.97 on simulated astronomical
data and more importantly outperforms standalone versions of its recurrent and
convolutional constituents. We find that combining recurrent and convolutional
layers within one coherent network architecture allows the network to optimally
weight and aggregate the temporal and image features to yield a promising tool for
lensed supernovae identification.

1 Introduction

Astronomical systems in which two galaxies are aligned along the line of sight for an Earthly observer
and a star explodes into a supernova in the background galaxy are both rare and powerful probes
of the underlying laws of our Universe (Treu & Marshall, 2016). To date, only a handful of lensed
supernovae (LSNe) have been observed, however in the upcoming Rubin Observatory’s Legacy
Survey of Space and Time (LSST), thousands are expected to be detectable (Oguri, 2019). The LSST
will produce time sequences of 4-channel color images over 10 years of observations of approximately
37 billion objects (Ivezić et al., 2019), necessitating an automated detection strategy for LSNe. In this
letter, we propose a novel deep learning architecture tailored to the problem of LSNe identification.
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Figure 1: A diagram of the network architecture. Two convolutional layers (orange) receive 4-channel
color images while two LSTM layers (blue) receive extracted 4-channel light curves. Fully-connected
layers (purple) classify the flattened and concatenated outputs. Activation functions are indicated by a
darkened band at the right edge of a layer. Table 1 displays the layer specifications. This visualization
was made with the PlotNeuralNet library (Iqbal, 2018).

2 Architecture

The network architecture was implemented with PyTorch (Paszke et al., 2019) and contains a
convolutional branch, a recurrent branch, and a fully connected classifier to weight the extracted
features from the two branches. The convolutional branch contains two convolutional layers (LeCun
et al., 1989), followed by max pooling. Then, prior to entering the classifier, the featurized data
representation is passed through two sets of dropout and fully connected layers to reduce the size of
the feature representation to be comparable with the recurrent branch. The recurrent branch contains
two long short-term memory (LSTM; Hochreiter & Schmidhuber, 1997) layers followed by a fully
connected layer that yields the same number of output features as the convolutional branch. Prior to
the classifier, a log softmax activation function is applied to the outputs of the two branches. The
data representations are then concatenated and passed through two more fully connected layers with
ReLU and softmax activation functions, respectively, which reduce the data representation size to an
array equal in size to the number of classes. Figure 1 illustrates the architecture and Table 1 presents
the specifications for each layer within the network.

3 Experiment

To test the network architecture, we simulate a realistic astronomical dataset and train a standalone
CNN, a standalone RNN, and our experimental network architecture. The main metric of interest
is the receiver operating characteristic area under curve (ROC AUC) for the two class problem of
general LSNe identification. This experiment has the limitation of using simulated data as opposed to
real data, so performance on real astronomical datasets cannot be directly inferred without retraining,
but we are nonetheless able to evaluate the experimental architecture.

Data We simulate astronomical data using the exact characteristics of the upcoming Vera C. Rubin
Observatory’s Legacy Survey of Space and Time. The simulated dataset contains 17 sub-classes:
nine types of common astronomical objects for the “No Lens” class, four types of non-time-varying
lensing systems for the “Lens” class, two types of lensed type-Ia supernovae for the “LSNe-Ia”
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Layer Specifications

conv1† Conv2D — (k: 15, p: 2, s: 3) — (4→ 48)
conv2† Conv2D — (k: 5, p: 2, s: 1) — (48→ 96)

maxpool1 MaxPool2D (k: 2)
dropout1 Dropout2D (f : 0.25)

fc1† Linear (3456→ 408)
dropout2 Dropout (f : 0.5)

fc2‡ Linear (408→ 25)

lstm1 LSTM (h: 128)
lstm2 LSTM (h: 128)
fc3‡ Linear (128→ 25)

fc4† Linear (50→ 8)
fc5‡ Linear (8→ 4)

Table 1: ZipperNet layer specifications. A shorthand notation has been utilized for kernel size (k),
padding (p), stride (s), dropout fraction (f ), and hidden units (h).
† Uses a ReLU activation function
‡ Uses a LogSoftmax activation function
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Figure 2: Examples of the 17 simulated systems from the dataset grouped into No Lens (blue), Lens
(magenta), LSN-Ia (orange), and LSN-CC (yellow) classes. Each example displays an average image
of the 4 color channels and the extracted light curve from our processing.
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class, and two types of lensed core-collapse supernovae for the “LSNe-CC” class. Each of the four
classes accounts for 25 percent of the dataset. Object colors, shapes, distances, time variability, and
all known physical correlations are sampled from catalogs of astronomical observations to ensure
realistic simulations (Abbott et al., 2021). We simulate a modest dataset of 10,000 examples using the
deeplenstronomy library (Morgan et al., 2021) and apply rotations and mirroring for preprocessing.
Each dataset example is a sequence of 14 images from different time points in a regular observing
sequence. Prior to entering the network, the sum of the pixel values in a circular aperture is extracted
from each image and stored in an array and the sequence of images is averaged into a single image.
Both the light curve extraction and image averaging are performed in each of the four color channels,
so that network inputs are a 45× 45× 4 color image and a 14× 4 color light curve. Configuration
files to reproduce the dataset are available online (Morgan, 2021). Figure 2 shows examples of each
of the systems that comprise the four-class dataset as well as their extracted time-variability.

Training We partition our simulated data into 80 percent training, 10 percent validation, and 10
percent testing splits. All networks are trained using the Adam (Kingma & Ba, 2017) optimizer,
a constant learning rate of 0.001, and categorical cross entropy loss. We utilize a batch size of
5 since the recurrent cells were observed to not perform well at larger batch sizes. The learning
algorithm hyperparameters and the network hyperparameters were determined through iterative tests
on the validation dataset, though an exhaustive hyperparameter optimization was not performed. The
results presented in this letter are for the 10 percent testing split after training on the training plus
validation sets using the selected hyperparameters. We train the networks for 40 epochs in total, and
the validation accuracies were observed to plateau after approximately 20 epochs. Because of the
modest network and dataset size, we were able to train each network locally on a MacBookPro with a
2.3 GHz Dual-Core Intel Core i5 processor and 16GB of RAM in a wall-clock time of 7 hours.

Results Testing dataset ROC curves for the standalone RNN, standalone CNN, and our experimental
ZIPPER architecture are presented in Figure 3. We also present a fourth classifier called COMBO,
which requires both the RNN and CNN to predict that an object is a LSN. We note the presence
of sharp features in the RNN (and consequently the COMBO) ROC curves, and interpret them as
the influence of incorrectly classified unlensed SNe (systems 16 and 17 in Figure 2). Without the
image-based information from the CNN feature representation, the RNN is unable to differentiate
between unlensed and lensed SNe.

While it is interesting (and validating for our approach) that the smooth ROC curve features are
recovered with the addition of image-based information, the key result is that the ZIPPER architecture
outperforms all other networks in terms of ROC AUC. The ZIPPER’s leveraging of image-based
(temporal) information allows it to perform well in areas where the RNN (CNN) has low performance.
Furthermore, the ZIPPER outperforming the COMBO classifier evidences an advantage in combining
the convolutional and recurrent structures within a unified framework: the network is able to optimally
weight the image and temporal features before using them to make a classification.

4 Conclusion

This analysis presents a novel deep learning architecture tailored to the problem of lensed supernovae
identification in large astronomical datasets. The architecture processes images with convolutional
layers, simultaneously processes brightness as a function of time with recurrent layers, concatenates
the feature representation, and classifies the data with a series of fully connected layers. This
multi-branch approach is ideal for putting image information of gravitational lensing and temporal
information of variability on the same footing, and outperforms comparable feed-forward networks.
With the performance demonstrated here, we expect this architecture to be a useful tool in the
identification of thousands of lensed supernovae in the upcoming Rubin Observatory’s Legacy Survey
of Space and Time and in the resolution of the tension on the value of the expansion rate of the
Universe.

5 Broader Impacts

The broader impacts of this work lie in its accessibility, reproducibility, simplicity, and generaliz-
ability. We make the neural network code and all dataset simulation inputs public (Morgan, 2021).
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Figure 3: Receiver Operating Characteristic (ROC) curves using different networks. The ROC curves
are calculated for the two-class problem of LSNIa and LSNCC versus No Lens and Lens. An Area
Under Curve (AUC) of 1.0 indicates perfect performance, while an AUC of 0.5 indicates random
guessing. The mean and standard deviation for 3 random seeds is presented.

Furthermore, the data from the Rubin Observatory’s Legacy Survey of Space and Time will be public
1 year after it is collected, meaning any interested scientist can take this technique, apply it to real data,
and perform their own search for gravitationally lensed supernovae. Beyond data and code access,
we have intentionally designed this first iteration of our ZipperNet architecture as simply as possible.
We anticipate that several applications could be found outside of astronomy where multiple types
of information (in our case temporal and image-based), can be utilized within a unified framework
to achieve higher performance. By itself, the architecture presented here has no direct negative
impact on society; however, it is important to be mindful of how improved performance by leveraging
multiple data formats could one day produce ethical dilemmas, e.g. invasions of privacy. Keeping
ethical concerns in mind with use cases, we can look on the bright side of the broader impacts of
expansions on this multi-branch network architecture. Problems in medical physics, self-driving cars,
and several other applications routinely have to combine multiple types of information into artificial
intelligence frameworks and could improve many features of society as a whole. We encourage
other researchers to explore the multi-branch approach presented here, expand on it, and apply it to
problems across several fields while cautiously practicing mindfulness regarding ethical concerns.
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