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Abstract

In recent years, the Transformer architecture has proven to be very successful in
sequence processing, but its application to other data structures, such as graphs,
has remained limited due to the difficulty of properly defining positions. Here, we
present the Spectral Attention Network (SAN), which uses a learned positional
encoding (LPE) that can take advantage of the full Laplacian spectrum to learn the
position of each node in a given graph. This LPE is then added to the node features
of the graph and passed to a fully-connected Transformer. By leveraging the full
spectrum of the Laplacian, our model is theoretically powerful in distinguishing
graphs, and can better detect similar sub-structures from their resonance. Further,
by fully connecting the graph, the Transformer does not suffer from over-squashing,
an information bottleneck of most GNNs, and enables better modeling of physical
phenomenons such as heat transfer and electric interaction. When tested empirically
on a set of 4 standard datasets, our model performs on par or better than state-of-the-
art GNNs, and outperforms any attention-based model by a wide margin, becoming
the first fully-connected architecture to perform well on graph benchmarks.

1 Introduction

The prevailing strategy for graph neural networks (GNNs) has been to directly encode graph structure
structure through a sparse message-passing process [14, 16]. In this approach, vector messages
are iteratively passed between nodes that are connected in the graph. Multiple instantiations of
this message-passing paradigm have been proposed, differing in the architectural details of the
message-passing apparatus (see [16] for a review).

There is a growing trend across deep learning towards more flexible architectures, which avoid strict
and structural inductive biases. Most notably, the exceptionally successful Transformer architecture
removes any structural inductive bias by encoding the structure via soft inductive biases, such as
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positional encodings [27]. In the context of GNNs, the self-attention mechanism of a Transformer
can be viewed as passing messages between all nodes, regardless of the input graph connectivity.

In this work, we offer a principled investigation of how Transformer architectures can be applied
in graph representation learning. Our primary contribution is the development of novel and
powerful learnable positional encoding methods, which are rooted in spectral graph theory. Our
positional encoding (PE) technique — and the resulting spectral attention network (SAN) architecture
— addresses key theoretical limitations in prior graph Transformer work [11] and provably exceeds the
expressive power of standard message-passing GNNs. We show that full Transformer-style attention
provides consistent empirical gains compared to an equivalent sparse message-passing model, and
we demonstrate that our SAN architecture is competitive with or exceeding the state-of-the-art on
several well-known graph benchmarks. An overview of the entire method is presented in Figure 4 in
the appendix, with a link to the anonymous code here: https://anonymous.4open.science/r/
SAN-5C8C.

2 Theoretical Motivations and Physical Insights

2.1 Absolute and relative positional encoding with eigenfunctions

In this section, we investigate how eigenfunctions of the Laplacian can be used to define absolute and
relative PEs in graphs and measure physical interactions between nodes in graphs.

2.1.1 Eigenvectors equate to sine functions over graphs

In the Transformer architecture, a fundamental aspect is the use of sine and cosine functions as PEs
for sequences [27]. However, sinusoids cannot be clearly defined for arbitrary graphs, since there is
no clear notion of position along an axis. Instead, their equivalent is given by the eigenvectors φ of
the graph Laplacian L. Indeed, in a Euclidean space, the Laplacian (or Laplace) operator corresponds
to the divergence of the gradient and its eigenfunctions are sine/cosine functions, with the squared
frequencies corresponding to the eigenvalues (we sometimes interchange the two notions from here
on). Hence, in the graph domain, the eigenvectors of the graph Laplacian are the natural equivalent of
sine functions, and this intuition was employed in multiple recent works which use the eigenvectors
as PEs for GNNs [12], for directional flows [3] and for Transformers [11].

Being equivalent to sine functions, we naturally find that the Fourier Transform of a function F [f ]
applied to a graph gives F [f ](λi) = 〈f,φi〉, where the eigenvalue is considered as a position in the
Fourier domain of that graph [5]. Thus, the eigenvectors are best viewed as vectors positioned on the
axis of eigenvalues rather than components of a matrix as illustrated in Figure 1.

Figure 1: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors φi viewed as vectors
positionned on the axis of frequencies (eigenvalues).

2.1.2 What do eigenfunctions tell us about relative positions?

Importantly, the eigenvectors of the Laplacian also hold important information about the physics of
a system and can reveal distance metrics. This is not surprising as the Laplacian is a fundamental
operator in physics and is notably used in Maxwell’s equations [13] and the heat diffusion [5].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s
function of the Laplacian [7], represents the electrostatic potential of a given charge. In a graph, the
same concept uses the pseudo-inverse of the LaplacianG and can be computed by its eigenfunctions.
See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, φ̂i and λ̂i are
the i-th eigenvectors and eigenvalues of the symmetric LaplacianD
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matrix, and φ̂i,j the j-th row of the vector.

G(j1, j2) = d
1
2
j1
d

−1
2
j2

∑
i>0

(φ̂i,j1φ̂i,j2)
2

λ̂i
(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines
known as a Fourier series [6]. As eigenvectors of the Laplacian are the analogue of these functions in
graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [5, 3],
we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD
between nodes j1, j2 [5, 8]. Similarly, the biharmonic distance dB was proposed as a better measure
of distances [22]. Here we use the eigenfunctions of the regular Laplacian L.

d2D(j1, j2) =
∑
k>0

e−2tλi(φi,j1 − φi,j2)2 , d2B(j1, j2) =
∑
i>0

(φi,j1 − φi,j2)2

λ2i
(2)

2.1.3 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate between different
graph structures and sub-structures, as they can be interpreted as the frequencies of resonance
of the graph. This led to the famous question about whether we can hear the shape of a drum
from its eigenvalues [19], with the same questions also applying to geometric objects [10] and 3D
molecules [25]. Various success was found with the eigenfunctions being used for partial functional
correspondence [24], algorithmic understanding geometries [21], and style correspondence [10].
Examples of eigenvectors for molecular graphs are presented in Figure 2.

Figure 2: Examples of eigenvalues λi and eigenvectors φi for molecular graphs. The low-frequency
eigenvectors φ1,φ2 are spread accross the graph, while higher frequencies, such as φ14,φ15 for the
left molecule or φ10,φ11 for the right molecule, often resonate in local structures.

2.2 Laplace Eigenfunctions etiquette

In the following section, we present key principles from spectral graph theory to consider when
constructing PEs for graphs, most of which have been overlooked by prior methods.

Normalization. Given an eigenvalue of the Laplacian, there is an associated eigenspace of dimension
greater than 1. To make use of this information in our model, a single eigenvector has to be chosen.

Eigenvalues. Another fundamental aspect is that the eigenvalue associated with each eigenvector
supplies valuable information. An ordering of the eigenvectors based on their eigenvalue works in
sequences since the frequencies are pre-determined. However, this assumption does not work in
graphs since the eigenvalues in their spectrum can vary. For example, in Figure 2, we observe how an
ordering would miss the fact that both molecules resonate at λ = 1 in different ways.

Multiplicities. Another important problem with choosing eigenfunctions is the possibility of a
high multiplicity of the eigenvalues, i.e. when an eigenvalue appears as a root of the characteristic
polynomial more than once. In this case, the associated eigenspace may have dimension 2 or more
as we can generate a valid eigenvector from any linear combination of eigenvectors with the same
eigenvalue.

Variable number of eigenvectors. A graphGi can have at mostNi linearly independent eigenvectors
with Ni being its number of nodes. Prior work [11] elected to select a fixed number k eigenvectors
for each graph, where k ≤ Ni,∀i. This produces a major bottleneck when the smallest graphs
have significantly fewer nodes than the largest graphs in the dataset since a very small proportion of
eigenvectors will be used for large graphs. This inevitably causes loss of information and motivates
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the need for a model which constructs fixed PEs of dimension k, where k does not depend on the
number of eigenvectors in the graph.

Sign invariance. As noted earlier, there is a sign ambiguity with the eigenvectors. With the sign of
φ being independent of its normalization, we are left with a total of 2k possible combination of signs
when choosing k eigenvectors of a graph.

3 Model Architecture

Here, we propose a method for learning node PEs motivated by the principles from section 2.2. The
idea of our LPE is inspired by Figure 1, where the eigenvectors φ are represented as a non-uniform
sequence with the eigenvalue λ being the position on the frequency axis.

The proposed LPE architecture is presented in Figure 5 in the appendix. First, we create an embedding
matrix of size 2×m for each node j by concatenating the m-lowest eigenvalues with their associated
eigenvectors. Here, m is a hyper-parameter for the maximum number of eigenvectors to compute
and is analog to the variable-length sequence for a standard Transformer. For graphs where m > N ,
a masked-padding is simply added. A linear layer is then applied on the dimension of size 2 to
generate new embeddings of size k. A Transformer Encoder then computes self-attention on the
sequence of length m and hidden dimension k. Finally, a sum pooling reduces the sequence into a
fixed k-dimensional node embedding. This embedding is then concatenated to each nodes’ initial
feature vector, before being passed to the Main Graph Transformer, whose details are described in
the appendix.

The LPE model addresses key limitations of previous graph Transformers and is aligned with the first
four etiquettes presented in section 2.2. Furthermore, the model has access to the entire spectrum (if
selecting m = Nmax, where Nmax is the largest number of nodes a graph has in the dataset) and
is theoretically capable of learning the physical interactions described in 2.1.2. This is especially
important when the graph models physical, chemical, or biological structures, but can also help
understanding pixel interaction in images [1, 2].

4 Experimental Results

When comparing to the state-of-the-art (SOTA) models in the literature in Figure 3, we observe that
our SAN model consistently performs better on all synthetic datasets from [12], highlighting the
strong expressive power of the model. Other top-performing models, namely PNA [9] and DGN [3],
use a message-passing approach [14] with multiple aggregators. When compared to attention-based
models, SAN consistently outperforms the SOTA by a wide margin. To the best of our knowledge,
SAN is the first fully-connected model to perform well on graph tasks, as is evident by the poor
performance of the GT (full) model.

Best

Worst

Column1 ZINC PATTERN CLUSTER MOLHIV

Model MAE % ACC % ACC % ROC-AUC
GCN 0.367	 ±0.011 71.892±	0.334 68.498	 ±0.976 76.06	 ±0.97

GraphSage 0.398	 ±0.002 50.492	 ±0.001 63.844	 ±0.110 -

GatedGCN 0.282	 ±0.015 85.568	 ±0.088 73.840	 ±0.326 -

GatedGCN-PE 0.214	 ±0.013 86.508	 ±0.085 76.082	 ±0.196
GIN 0.526	 ±0.051 85.387	 ±0.136 64.716	 ±1.553 75.58	 ±1.40
PNA 0.142	 ±0.010 - - 79.05	 ±1.32
DGN - - - 𝟕𝟗.𝟕𝟎	 ±𝟎. 𝟗𝟕

Attention-based

GAT 0.384	 ±0.007 78.271	 ±0.186 70.587	 ±0.447 -

GT (sparse) 0.226	 ±0.014 84.808	 ±0.068 73.169	 ±0.662 -

GT (full) 0.598	± 0.049 56.482	 ±3.549 27.121	 ±8.471 -

SAN (ours) 𝟎.𝟏𝟑𝟗	 ±𝟎. 𝟎𝟎𝟔 𝟖𝟔.𝟓𝟖𝟏	 ±𝟎. 𝟎𝟑𝟕 𝟕𝟔.𝟔𝟗𝟏	 ±𝟎. 𝟐𝟒𝟕 77.85	 ±0.65

Figure 3: Comparing our tuned model on datasets from [12, 17], against GCN [20], GraphSage [15],
GIN [30], GAT [28], GatedGCN [4], PNA [9], and DGN [3]. Means and uncertainties are derived
from four runs with different seeds, except MolHIV which uses 10 runs with identical seed. The
number of parameters is fixed to ∼ 500k for ZINC, PATTERN and CLUSTER.
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5 Societal Impact

The presented work is focused on theoretical and methodological improvements to graph neural
networks, so there are limited direct societal impacts. However, indirect negative impacts could be
caused by malicious applications developed using the algorithm. One such example is the tracking of
people on social media by representing their interaction as graphs, thus predicting and influencing
their behavior towards an external goal. It also has an environmental impact due to the greater energy
use that arises from the computational cost O(m2N + N2) being larger than standard message
passing or convolutional approaches of O(E).
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A Overview of SAN
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: hidden dimension

Figure 4: The proposed SAN model with the node LPE, a generalization of Transformers to graphs.

B LPE Transformer

Figure 5: Learned positional encoding (LPE) architectures, with the model being aware of the graph’s
Laplace spectrum by considering m eigenvalues and eigenvectors, where we permit m ≤ N , with
N denoting the number of nodes. Since the Transformer loops over the nodes, each node can be
viewed as an element of a batch to parallelize the computation. Here φi,j is the j-th element of the
eigenvector paired to the i-th lowest eigenvalue λi.

C Details of the Main Graph Transformer

In the following, note that hli is the i-th node’s features at the l-th layer, and eij is the edge feature
embedding between nodes i and j. Our model employs multi-head attention over all nodes:

ĥl+1
i = Ol

h

Hn

k=1

(
∑
j∈V

wk,lij V
k,lhlj) (3)

where Ol
h ∈ Rd×d, V k,l ∈ Rdk×d, H denotes the number of heads, L the number of layers, and

f

concatenation. Note that d is the hidden dimension, while dk is the dimension of a head ( dH = dk).
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A key addition from our work is the design of an architecture that performs full-graph attention while
preserving local connectivity with edge features via two sets of attention mechanisms: one for nodes
connected by real edges in the sparse graph and one for nodes connected by added edges in the
fully-connected graph. The attention weights wk,lij in equation 3 at layer l and head k are given by:

ŵk,l
ij =


Q1,k,lhl

i◦K
1,k,lhl

j◦E
1,k,leij√

dk
if i and j are connected in sparse graph

Q2,k,lhl
i◦K

2,k,lhl
j◦E

2,k,leij√
dk

otherwise

 (4)

wk,lij =


1

1+γ · softmax(
∑
dk
ŵk,l
ij ) if i and j are connected in sparse graph

γ
1+γ · softmax(

∑
dk
ŵk,l
ij ) otherwise

 (5)

where ◦ denotes element-wise multiplication and Q1,k,l, Q2,k,l, K1,k,l, K2,k,l, E1,k,l, E2,k,l ∈
Rdk×d. γ ∈ R+ is a hyperparameter which tunes the amount of bias towards full-graph attention,
allowing flexibility of the model to different datasets and tasks where the necessity to capture long-
range dependencies may vary. Note that softmax outputs are clamped between−5 and 5 for numerical
stability and that the keys, queries and edge projections are different for pairs of connected nodes
(Q1,K1,E1) and disconnected nodes (Q2,K2,E2).

A multi-layer perceptron (MLP) with residual connections and normalization layers are then applied
to update representations, in the same fashion as the GT method [11].
ˆ̂
hl+1 = Norm(hli + ĥ

l+1
i ),

ˆ̂
ĥl+1
i =W l

2ReLU(W l
1
ˆ̂
hl+1
i ), hl+1

i = Norm(
ˆ̂
hl+1 +

ˆ̂
ĥl+1
i ) (6)

with the weight matrices W l
1 ∈ R2d×d, W l

2 ∈ Rd×2d. Edge representations are not updated as it
adds complexity with little to no performance gain. Bias terms are omitted for presentation.

D Limitations

The first limitation of the node-wise LPE, and noted in Table ?? is the lack of sign invariance of the
model. A random sign-flip of an eigenvector can produce different outputs for the LPE, meaning
that the model needs to learn a representation invariant to these flips. We resolve this issue with the
edge-wise LPE proposed in ??, but it comes at a computational cost.

Another limitation of the approach is the computational complexity of the LPE being O(m2N), or
O(N3) if considering all eigenfunctions. Further, as nodes are batched in the LPE, the total memory
on the GPU will be num_params * num_nodes_in_batch instead of num_params * batch_size.
Although this is limiting, the LPE is not parameter hungry, with k usually kept around 16. Most of
the model’s parameters are in the Main Graph Transformer of complexity O(N2).

Despite Transformers having increased complexity, they managed to revolutionalize the NLP com-
munity. We argue that to shift away from the message-passing paradigm and generalize Transformers
to graphs, it is natural to expect higher computational complexities. This is exacerbated by sequences
being much simpler to understand than graphs due to their linear structure. Future work could
overcome this by using variations of Transformers that scale linearly or logarithmically [26].

E Appendix - Implementation details

E.1 Benchmarks and datasets

To test our models’ performance, we rely on standard benchmarks proposed by [12] and [17] and
provided under the MIT license. In particular, we chose ZINC, PATTERN, CLUSTER, and MolHIV.

ZINC [12]. A synthetic molecular graph regression dataset, where the predicted score is given by
the subtraction of computationally estimated properties logP − SA. Here, logP is the computed
octanol-water partition coefficient, and SA is the synthetic accessibility score [18].

CLUSTER [12]. A synthetic benchmark for node classification. The graphs are generated with
Stochastic Block Models, a type of graph used to model communities in social networks. In total, 6
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communities are generated and each community has a single node with its true label assigned. The
task is to classify which nodes belong to the same community.

PATTERN [12]. A synthetic benchmark for node classification. The graphs are generated with
Stochastic Block Models, a type of graph used to model communities in social networks. The task
is to classify the nodes into 2 communities, testing the GNNs ability to recognize predetermined
subgraphs.

MolHIV [17]. A real-world molecular graph classification benchmark. The task is to predict whether
a molecule inhibits HIV replication or not. The molecules in the training, validation, and test sets are
divided using a scaffold splitting procedure that splits the molecules based on their two-dimensional
structural frameworks. The dataset is heavily imbalanced towards negative samples. It is also known
that this dataset suffers from a strong de-correlation between validation and test set performance,
meaning that more hyperparameter fine-tuning on the validation set often leads to lower test set
results.

E.2 SOTA Comparison study

For the results in Figure 3, we tuned some of the hyperparameters, using the following strategies.
The optimal parameters are in bold.

ZINC. Due to the 500k parameter budget, we tuned the pairing {GT layers, GT hidden dimension} ∈
{{6, 72}, {8, 64}, {10,56}} and readout ∈ {"mean", "sum"} PATTERN. Due to the 500k parameter
budget and long training times, we only tuned the pairing {GT layers, GT hidden dimension}
∈ {{4,80}, {6, 64}} CLUSTER. Due to the 500k parameter budget and long training times, we
only tuned the pairing {GT layers, GT hidden dimension} ∈ {{12, 64}, {16,48}}MolHIV. With no
parameter budget, we elected to do a more extensive parameter tuning in a two-step process while
measuring validation metrics on 3 runs with identical seeds.

1. We tuned LPE dimension ∈ {8, 16}, GT layers ∈ {4, 6, 8, 10}, GT hidden dimension
∈ {48, 64, 72, 80, 96}

2. With the highest performing validation model from step 1, we then tuned dropout
∈ {0, 0.01, 0.025} and weight decay ∈ {0, 10−6, 10−5}

With the final optimized parameters, we reran 10 experiments with identical seeds.

E.3 Computation details
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Figure 6: Computational details for SOTA Comparison study.
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