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Abstract

Neural-network-based surrogate models, which replace (parts of) a physics-based
simulator, are attractive for their efficiency, yet they suffer from a lack of extrapola-
tion capability. Focusing on the wave equation, we investigate the use of several
physics-based regularization terms in the loss function as a way to increase the
extrapolation accuracy, together with assessing the impact of a term that conditions
the neural network to weakly satisfy the boundary conditions. These regularization
terms do not require any labeled data. By gradually incorporating the regularization
terms while training, we achieve a more than 5× reduction in extrapolation error
compared to a baseline (i.e., physics-less) neural network that is trained with the
same set of labeled data. We map out future research directions, and provide some
insights about leveraging the trained neural-network state for devising sampling
strategies.

1 Introduction

Scientific computing has benefited from decades of progress in numerical algorithms and advances in
hardware performance [1]. This evolution enters a new chapter as large-scale scientific computing
applications face many challenges related to the slowdown of Moore’s law [7], the pursuit of extreme
parallelism [5], and the quest for higher energy efficiency [4]. Assuming the use of existing computing
technology, high-performance computers of prohibitive dimension and cost would be required to meet
society’s requirements for more accurate and reliable computational models. While the development
of new computing devices will address some of these challenges [14], a step change in numerical
algorithms may be necessary. Inspired by rapid progress in applying deep learning for cognitive tasks
[6], there is increasing hope and expectation that neural networks (NN) can be leveraged to improve
the speed, accuracy, and/or energy efficiency of scientific computations. This endeavor is a subset of
the broader AI for Science (or Scientific Machine Learning) discipline [13].

NN-based surrogate models, whereby (part of) a physics-based simulation is replaced by a neural
network prediction, are attractive because their time-to-solution can sometimes be orders of magnitude
lower than physics-based algorithms [3]. NN-based surrogate models also tend to be more flexible

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).



and to handle nonlinear transformations better than more traditional model-reduction techniques,
such as the proper orthogonal decomposition method [8]. Not surprisingly, neural networks are
especially effective at predicting solutions in problem configurations for which the neural network
was trained (i.e., neural networks interpolate well) [2]. Issues arise, and mitigation strategies need
to be implemented, when neural networks are used to make predictions based on input data that lie
outside of the range of the dataset used for optimizing the network parameters (i.e., neural networks
extrapolate poorly). Mitigation strategies such as training on datasets of larger range and retraining
on the fly when encountering new input data increase the training cost, thereby making this cost less
amortizable and decreasing the value proposition of using neural networks in the first place.

Recognizing the value of physics-based modeling in scientific computing [15], the emerging field
of physics-informed neural networks seeks to optimize the NN parameters subject to constraints
imposed by the physics of the problem [11]. Here, we adopt the method in which the constraint
takes the form of a regularization term in the objective function. That regularization term, which is
derived from equations underlying the problem, imposes a penalty on the NN parameters and steers
the neural network to behave in closer agreement to the physics. In particular, we investigate the use
of multiple types of physics-informed regularization terms for the acoustic wave equation and show
that by adding the proper regularization terms, the extrapolation error decreases by more than 5×
compared to using a physics-less NN.

2 Physics-based regularization for the wave equation

The wave equation is at the core of many scientific applications, such as earthquake modeling,
acoustics, hydrocarbon exploration, and stealth aircraft design. Traditional numerical methods are
effective at solving the wave equation, yet they remain expensive, especially when considering the
requirement of solving the equation over an entire domain while typically only needing time series at
a few locations. It is conceivable that a well-trained neural network, only taking a spatial location and
a time stamp as inputs, would be very advantageous from a time-to-solution perspective. While there
has been some research on using NNs to approximate wave propagation [10, 9], very limited work
has focused on using physics-informed NNs (PINNs) to improve the extrapolation accuracy in the
presence of boundaries and by conditioning the NN with boundary conditions, which is the focus of
this section, together with an investigation of various physics-based regularization terms.

We consider the two-dimensional acoustic wave equation

∂p

∂t
+ κ∇ · v = 0,

∂v

∂t
+

1

ρ
∇p = 0,

along with reflecting boundary conditions v · n̂ = 0, where p and v are pressure and velocity,
respectively, and n̂ is the normal to the boundary. We assume unit values for the bulk modulus of
compressibility, κ, and density, ρ, in our experiments. We solve the wave equation as a system of
first-order partial differential equations in our simulator based on the discontinuous Galerkin method,
which is used for generating training data for (x, t) ∈ [0, 1]2 × [0, 1]. Our intent is to train, and to
adequately regularize, a neural network based on simulation data acquired every 10th time step for
t ∈ [0, 1] (time step is 0.001) and to assess the ability of the NN to accurately predict the solution for
t ∈ (1, 2]. Instead of using all simulation samples in space for a given time snapshot, we randomly
select 1% of the discretization points in (0, 1)2 and 10% of the points along the domain boundary,
as illustrated in Figure 1. The test set is built from sampling 5% of simulation data in (0, 1)2 every
10th time step. We consider a fixed network architecture (dense NN with five 100-wide hidden layers
and tanh activation) in all experiments presented below. All NNs are trained with the same set of
labeled data for t ≤ 1, as described above. Other training parameters are provided in Section A.1.
Differences in performance stem from whether regularization is introduced or not, and its type. The
loss function consists of the mean square error (MSE) between the simulation output (p,v) and
the NN prediction of these state variables, (p̂, v̂), for each input (x, t). For all regularization-based
training procedures, the loss function is augmented with a physics-based penalty term, Er, which can
take various forms as presented in Table 1. We also add a term, Eb, that conditions the neural network
to satisfy the boundary conditions: v · n̂ = 0. Note that this conditioning is only applied when using
the first-order system as regularizer, which is consistent with the underlying mathematical model.
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(a) Simulation (t = 0.0) (b) Simulation (t = 0.4) (c) Simulation (t = 1.0) (d) Sampling

Figure 1: (a-c) Simulation snapshots and (d) example of data collection for t=0.56, where black and
blue markers denote interior and boundary data samples, respectively.

The total loss function L can be written as:

L =MSE + λrEr + λbEb, (1)

where λr and λb allow for varying the strength of regularization and conditioning, which are gradually
introduced in later stages of training. Interpolation and extrapolation errors are reported in Table 1. As

Table 1: Regularization type and prediction errors (RMS of difference between prediction and 5%
of simulation data, randomly sampled in space every 10th step). Interpolation error for t ∈ [0, 1].
Extrapolation error for t ∈ (1, 2]. Average of 5 runs (standard deviation between parentheses).

Name Er Eb Interp. Extrap.
error error

Baseline NN None None 1.8× 10−3 (43%) 1.8× 10−1 (16%)
PINN 1st |p̂t +∇ · v̂|+ ‖v̂t +∇p̂‖ ‖v̂n‖ 7.3× 10−3 (9%) 3.1× 10−2 (35%)
PINN 2nd

∣∣p̂tt −∇2p̂
∣∣ None 1.8× 10−2 (7%) 1.9× 10−1 (25%)

expected, the baseline NN (without any regularization) makes accurate predictions in the interpolation
domain, exhibiting the ability to reproduce the solution of the wave equation as it is given in the form
of labeled data. The extrapolation error is much higher, which is also visible in Figure 2. Adding
first-order regularization and boundary conditioning decreases the extrapolation error by more than
5×, to the detriment of a slight (though acceptable) loss of accuracy in the interpolation region.
This compromise could be mitigated by using a larger NN (not tried). We note the inability of the
second-order regularizer to improve the extrapolation accuracy. In an attempt to isolate the effect of
regularization on prediction accuracy, we adopted the same training strategy for all neural networks
(except for the regularization term). To that effect, we believe that some of the errors in Table 1
could be reduced by training differently and/or by using different neural architectures, all of which is
ongoing work.

3 Future work

An appropriate physics-based regularization forces a shift in the NN’s predictive power from the
interpolation region to the extrapolation region. While it is clear that the shift occurs through changing
the neural network weights, the nature of the change is not clear. Insights in this area could make
neural network extrapolation more accessible and deliberate. Most of the complex behavior of a
NN’s activation functions occurs around the y-axis, that is, in the active region. Inputs far outside of
the active region are saturated and their activation is insensitive to small changes, making the NN
less effective at modeling complex behavior. We propose to use saturation as a measure of a NN’s
ability to properly extrapolate. We simply define saturation of a neuron µn(z) through an indicator
function: µn = 1 if |z| > k and µn = 0 if |z| ≤ k, for a given activation input z and threshold k
(other metrics can be used [12]). Layerwise saturation is the average of neuronal saturations and lies
between 0 and 1. We consider a simple two-dimensional paraboloid x2 + y2 as the target function
to extrapolate and train NNs with labeled data gathered on [−1, 1]2. One NN is trained without
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(a) Simulation (t = 1.2) (b) Baseline NN (t = 1.2) (c) PINN 1st (t = 1.2) (d) PINN 2nd (t = 1.2)

(e) Simulation (t = 1.6) (f) Baseline NN (t = 1.6) (g) PINN 1st (t = 1.6) (h) PINN 2nd (t = 1.6)

(i) Simulation (t = 2.0) (j) Baseline NN (t = 2.0) (k) PINN 1st (t = 2.0) (l) PINN 2nd (t = 2.0)

Figure 2: Comparison of extrapolation performance between simulation (left column) and predictions
from neural networks trained with different regularization strategies (as described in Table 1).

regularization (baseline NN), whereas training of the second NN (PINN) is regularized via penalizing
the variance of second-order derivatives on [−2, 2]2 (in addition to using labeled data on [−1, 1]2).
Layerwise saturation as a function of space is shown in Figure 3. In particular, we show the difference
in layer saturation between the PINN and the baseline NN, with negative values indicating areas
where the PINN is less saturated (and more effective) than the baseline NN. The maps of saturation
difference in the first two layers deserves special attention, as they confirm the PINN’s behavior
observed for the wave extrapolation problem. Specifically, the tendency of the PINN to relax the
accuracy requirement in the interpolation region so as to be able to increase the accuracy in the
extrapolation region. This behavior, which appears to be target-function-agnostic, could serve as the
basis for building a posteriori error estimates or devising more efficient sampling strategies.

Figure 3: Difference between PINN saturation and baseline NN saturation, for each layer (average of
five trained models).
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4 Summary

Preliminary results demonstrate the importance of not only incorporating physics-based regulariza-
tion that is consistent with the mathematical model being used to generated labeled data, but to
also incorporate consistent boundary conditioning. It is unclear, however, how to translate those
requirements for field or lab labeled data. We propose to use and to continue investigating input
saturation as an indirect measure of a NN’s extrapolative power as surrogate models. The difference
in saturation between a physics-less NN and a PINN is consistent with the shift in experimental
errors, which strengthens the case that saturation-based metrics could be developed into a posteriori
and function-agnostic error estimates, and used to devise smarter sampling strategies.

5 Broader impact

Neural networks as surrogate models in the physical sciences continue to make progress, with
potential sizable impact in our ability to make much faster and more energy-efficient, even if less
accurate, predictions of physical processes. Areas such as sensitivity analysis (where parameter
sweep is used) and optimization (where the forward model is run many times and high accuracy
of the forward model is not always required) could see large benefits if used carefully. Our work
leverages past work on physics-informed neural networks and brings additional insight into the type
of regularization that is most effective. While focusing on the wave equation, our findings should
be transferable to other equations. Saturation-based a posteriori error analysis should be further
developed and could be used for devising sampling strategies to reduce extrapolation errors in target
regions. Since this metric is function-agnostic, its impact could be broader than what we presented.
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A Appendix

A.1 Neural network training for the wave problem

All neural networks for the wave problem were trained with the Adam optimizer for 2500 epochs and
a batch size of 512. The learning rate α(ε) depends on the epoch number, ε, as follows:

α(ε) =


α0 if ε < E0
(α0 − α1)

ε−E0
E1−E0 + α1 if E0 ≤ ε ≤ E1

α1 if E1 < ε
,

where α0 = 1.0 × 10−3 and α1 = 5.0 × 10−4, and E0 = 400, E1 = 2250. The regularization
parameters, λr and λb in Eq. (1), take on values according to the following schedule:

λr,b =


λ0 if ε < E0
(λ0 − λ1) ε−E0E1−E0 + λ1 if E0 ≤ ε ≤ E1
λ1 if E1 < ε

,

where λ0 = 0.0 and λ1 = 0.055.

Forward model runs (to produce training data) and training of the neural networks were all conducted
on a workstation-class 24-core CPU.
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