Deep learning techniques for a real-time neutrino
classifier
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Abstract

The ARTANNA experiment is a detector designed to record radio signals created by
high-energy neutrino interactions in the Antarctic ice. Because of the low neutrino
rate at high energies, the physics output is limited by statistics. Hence, an increase
in detector sensitivity significantly improves the interpretation of data and offers the
ability to probe new physics. The trigger thresholds of the detector are limited by
the rate of triggering on unavoidable noise. A real-time noise rejection algorithm
enables the thresholds to be lowered substantially and increases the sensitivity of
the detector by up to a factor of two compared to the current ARTANNA capabilities.
Deep learning discriminators based on Fully Connected Neural Networks (FCNN)
and Convolutional Neural Networks (CNN) are evaluated for their ability to reject
a high percentage of noise events (while retaining most of the neutrino signal) and
to classify events quickly. In particular, we describe a CNN trained on Monte Carlo
data that runs on the current ARTANNA microcontroller and retains 95% of the
neutrino signal at a noise rejection factor of 10°.

1 Introduction

Multi-messenger astrophysics is a field focused on observing not just light, but other messengers
coming from outer space to learn more about the universe. This research is focused on measuring
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Figure 1: Example waveforms for neutrino signal (left) and noise (right). Each plot contains 256
samples, which is the data from one antenna.

extreme-high-energy neutrinos to better understand the fierce processes of astronomical objects that
create them [3]]. In many ways, neutrinos are ideal cosmic messengers, but their expected rates and
interaction cross-section are extremely small [1, [7]. If the sensitivity of the detector is increased,
there is a higher chance of measuring these elusive neutrinos. One way to increase the sensitivity
is to lower the trigger threshold so that smaller neutrino signals are recorded by the detector. The
problem with this is that the trigger rate is already dominated by unavoidable noise, and the detector
has a limited data transmission rate since it’s located in a remote region of Antarctica. However, if
noise is identified and rejected in real time, the trigger thresholds can be lowered while maintaining
the same data rate, thus increasing the sensitivity of the detector.

The ARTANNA detector is an array of radio autonomous stations located in Antarctica [4]. Each
station consist of four log periodic dipole antennas (LPDA’s), but only two antennas need to measure
a signal to trigger the station. Once a station has triggered, the digitized waveforms of every antenna
channel contain 256 samples. The waveform data from all channels are piped into an Xilinx Spartan
4 FPGA, and then further processed and stored to an internal 32 GB memory card by an MBED
LPC 1768 microcontroller. Once a triggered event is saved, it is transferred to UC Irvine via Iridium
Satellite, which has an expected operation trigger rates of 0.3 mHz. In this study, neural networks are
used to classify incoming data in real time into noise and signal. The classification problem is highly
asymmetric with noise being many order or magnitude more common than signal. The efficiency and
processing time of the network is determined by implementing it onto the current MBED (high level
control of the board) and separately a possible upgrade to the MBED, a Raspberry Pi. Any future
improvements to the ARTANNA hardware need to be low powered and able to withstand the harsh
conditions of Antarctica.

2 Noise rejection using neural networks

To implement a deep learning filter, the network structure needs to be optimized for fast and accurate
classification. For accuracy, the two metrics are neutrino signal efficiency (defined here as the ratio
of correctly identified signal events to the total number of signal events) and noise rejection factor
(defined here as ﬁ, where NV is the noise efficiency, i.e., the ratio of correctly identified noise
events to the total number of noise events). The goal is to reject several orders-of-magnitude of noise
while retaining most of the neutrino signals. At trigger level, the signal purity is only of secondary
concern. In the following, the target is 5 orders-of-magnitude noise rejection while providing a high
signal efficiency at or above 95%. This would enable the trigger threshold to be lowered significantly
— thus increasing the sensitivity to extreme-high-energy neutrinos — while keeping a low event save
rate of a few mHz. Typically using a more complex network structure would yield more accurate
results, but this would also create a slower network. These two constraints need to be optimized as
the deep learning architecture is developed.

2.1 Data

NuRadioMC [6, 5] is a Monte Carlo simulation package for radio neutrino detectors, and it is used
to simulate a representative set of the expected neutrino events and thermal noise events for the
ARIANNA detector. In total 121,597 events are generated for the neutrino signal data set, and one
million events are generated for the noise data set. In Fig.[I] one antenna’s data from one event is
plotted for both neutrino signal and noise separately.
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Figure 2: Baseline architecture of a fully connected neural network (left) and a convolutional neural
network (right).

2.2 Network structures and training

All of the networks are created with Keras, a high-level interface to the machine-learning library
TensorFlow [2]]. Because a fast execution time of the network is one of the primary objectives, it
is important to keep the network size small. While the number of trainable parameters can give an
indication of network size, the number of Floating Point Operations (FLOPs) is the chosen metric for
network size in this paper. An efficient way to improve the network speed is to reduce the input data
size. Instead of feeding the signal waveform from all four antennas into the network, one way to cut
down on the size of input data is to use only the two antennas that caused the trigger. As each signal
waveform consists of 256 samples, the total input size to the network is 512 samples. In addition, a
further reduced input data set is studied that contains only 100 samples; selecting the antenna with
the highest signal amplitude, only the 100 samples around the maximum absolute value are used. The
reasoning for this is that the dominant neutrino signal does not span over the whole record length and
typically spans over less than 50 samples.

The two network architectures studied in the following are a fully connected neural network (FCNN)
and a convolutional neural network (CNN), depicted in Fig.[2] The FCNN used in this baseline test is
a fully connected single hidden layer with a node size of 64 for the 100 input samples and 128 for
the 512 input samples, a ReLU activation, and then a sigmoid activation in the output layer. The
CNN structure consists of 5 filters with 10x1 kernels each, a ReLU activation, a dropout of 0.5, a max
pooling with size 10x1, a flattening step to reshape the data, and a sigmoid activation in the output
layer. Both the CNN and FCNN are trained using the Adam optimizer with varying learning rates
from 0.0005-0.001 depending on which value works best for each individual model. The training
data set contains a total of 100,000 signal events and 600,000 noise events, where 80% is for training
and 20% is to validate the model during training. Once the network is trained, the test data is used
which contains 21,597 signal events and 500,000 noise events.

2.3 Neural network performance

The signal and noise classification distributions are significantly distinct. With the sigmoid activation
in the output layer, the classification distribution falls between 0 and 1, where close to 0 is noise-like
and close to 1 is signal-like. Once trained, a similar threshold cut value distribution to the left plot in
Fig.[3is obtained for the signal and noise data of all models. From each distribution, the amount of
signal efficiency vs. noise rejection can be varied by choosing different threshold cut values. Training
and testing these networks with each input data size yields the signal efficiency vs. noise rejection
plot on the right hand side of Fig.[3] Each data point corresponds to a different threshold cut value,
and the final threshold cut value is chosen by optimizing the noise rejection for the desired signal
efficiency. Since all of the networks have efficiencies above our target of 95% for signal at 10° noise
rejection, the main consideration for which network is best is the amount of FLOPs required for each
network because this directly impacts the processing time. Typically, CNN’s have less parameters
overall due to their convolutional nature, which focuses on smaller features within a waveform;
comparatively, the FCNN considers the whole waveform to make its prediction, so it requires more
node connections. The next step is to investigate the FLOPs for each network, and determine the
processing time on a given device.
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Figure 3: Histogram of threshold cut value for signal/noise classification (left), and signal efficiency
vs. noise rejection factor for FCNN’s and CNN’s with input data of 100 or 512 samples (right).

Table 1: Processing times per event and the number of Floating Point Operations (FLOPs) of various
models. *memory limitations prevented this measurement.

model FLOPs MBED Raspberry Pi
FCNN 512 samples 131,457  45ms 2.5ms
CNN 512 samples 55,816 * 1.5ms

FCNN 100 samples 12,993  4.7ms 0.46 ms
CNN 100 samples 10,096  3.7ms 0.39 ms

3 Experimental tests

We verify our simulation results in a lab measurement. A neutrino-like signal is generated using an
arbitrary waveform generator, attenuated, amplified, and recorded by the ARTANNA data acquisition
system (DAQ) and processed by the neural network in real time. The attenuation and amplification
steps lead to low signal-to-noise ratios as expected for neutrinos. A noise data set is measured
by recording thermal noise fluctuations from the amplifier. As shown on the left side of Fig.
the distributions of the neural network output between simulated and measured data agree well,
confirming the correctness of the simulated data set and the derived conclusions. Next, the processing
time of the deep-learning filter is studied. As the deep learning filter is intended as a real-time trigger,
a fast execution time is crucial. The current ARIANNA hardware is used to test and measure the
execution time under realistic conditions. Two microprocessors are explored for their processing
time and power consumption: a Raspberry Pi compute module 3+ and the MBED microcontroller.
The MBED is the current device installed in ARIANNA and the neural network is implemented
through custom C code. The Raspberry Pi is a microcomputer with a Raspbian operating system
which is based on Debian. As with the MBED, the neural net is implemented with a similar custom
C code on the Raspberry Pi. Because the optimal networks found in the previous section are small
and shallow, it is fairly simple to write a custom code that implements the trained neural network in
C for maximum performance. To test the prediction capabilities and the classification time in both
devices, a simulated event is read in and either matrix multiplied by the array of weights and biases
in the FCNN case or convolved with the weights and bias filters in the CNN case.

The total event processing time target value is under 10 ms so that the current trigger thresholds can
be lowered substantially. This would increase the detector’s sensitivity to neutrino by up to a factor
of two. Table[I] gives the processing times for various networks. The 100 input sample CNN has
the lowest processing time of 3.7 ms (270 Hz) and meets the efficiency requirements. In this test,
only the execution time of the neural network is measured. The time to transfer the data from the
waveform digitizers to the microcomputer of the current ARIANNA hardware is 7.3 ms, which is
significantly longer and restricts the low-level trigger rate. However, this can be solved with a new
revision of the ARIANNA DAQ in the future.



4 Summary and discussion

Due to the low neutrino flux at extreme-high-energies, the physics output of neutrino detectors is
limited by statistics. Probing new physics is made possible by implementing deep learning techniques
to increase the sensitivity of the ARIANNA detector. It was demonstrated that already a small shallow
CNN is capable of rejecting five order of magnitude of noise while retaining 95% of the neutrino
signal. In the future, several improvements to the ARIANNA hardware will be considered. First,
the ARIANNA hardware that sends the data from the FPGA to the MBED can be parallelized to
decrease the event readout time, which would provide the opportunity to trigger the detector at even
higher rates. Second, more capable computing on the hardware through improved electronics will be
studied. The current generation of ARIANNA hardware is now more than 10 years old, and many
recent microcomputer systems offer more performance at comparable power consumption.
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