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Abstract

Astrometric lensing has recently emerged as a promising avenue for characterizing
the population of dark matter clumps—subhalos—in our Galaxy. By leveraging
recent advances in simulation-based inference and neural network architectures, we
introduce a novel method to look for global dark matter-induced lensing signatures
in astrometric datasets. Our method shows significantly greater sensitivity to a
cold dark matter population compared to existing approaches, establishing machine
learning as a powerful tool for characterizing dark matter using astrometric data.

1 Introduction and background

Although there exists plenty of evidence for dark matter (DM) on galactic scales and above (see
Ref. [1] for a recent overview), the distribution of DM clumps—subhalos—on sub-galactic scales is
less well-understood and remains an active area of cosmological study. This distribution additionally
correlates with and may provide clues about the underlying particle physics nature of dark matter
(see e.g., Refs. [2–4]), highlighting its relevance across multiple domains.

While more massive dark matter subhalos can be detected and studied through their association with
luminous tracers such as bound stellar populations, subhalos with smaller masses . 109 M� are
not generally associated with luminous matter [5, 6], rendering their characterization challenging.
Gravitational effects provide one of the few avenues to probe the distribution of these otherwise-
invisible subhalos [7]. Gravitational lensing i.e., the bending of light from a background source due
to a foreground mass, is one such effect and has been proposed in various incarnations as a probe
of dark subhalos. Astrometric lensing, in particular, has recently emerged as a promising way to
characterize the dark matter subhalo population within the Milky Way.

Astrometry refers to the precise measurement of the positions and motions of luminous celestial
objects like stars and galaxies. Gravitational lensing of these background objects by a moving
foreground mass, such as a dark matter subhalo, can imprint a characteristic, correlated signal on their
measured kinematics (angular velocities and/or accelerations). Ref. [8] introduced several methods
for extracting this signature, including computing convolutions of the expected lensing signal on
astrometric datasets and detecting local kinematic outliers. Ref. [9] applied the former method to
data from the Gaia satellite, obtaining constraints on the abundance of dark compact objects in the
Milky Way and showcasing the applicability of astrometric dark matter searches in a practical setting.
Finally, Ref. [10] proposed using the angular power spectrum of the astrometric field as an observable
to infer the population properties of subhalos in our Galaxy, leveraging the collective, correlated
signal of a large subhalo sample.
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Astrometric datasets are inherently high-dimensional, consisting of positions and kinematics of
potentially millions of objects. Especially when the expected signal consists of the collective imprint
of a large number of lenses, characterizing their population properties involves marginalizing over all
possible configurations of subhalos, rendering the likelihood intractable and usually necessitating the
use of simplified data representations like the power spectrum. While effective, such simplification
can result in loss of information compared to that contained in the original dataset when the expected
signal is non-Gaussian in nature. The existence of systematic effects that are degenerate with a
putative signal in the low-dimensional summary domain can further inhibit sensitivity.

The dawn of the era of precision astrometry, with the Gaia satellite [11] having recently delivered
the most precise astrometric dataset to-date [12–14] and surveys including the Square Kilometer
Array (SKA) [15, 16] and Roman Space Telescope [17] set to achieve further leaps in sensitivity
over the next decade, calls for methods that can extract more information from these datasets than
is possible using existing techniques. In this direction, Ref. [18] proposed using a binary classifier
in order to detect either the presence or absence of a substructure signal in astrometric maps. In
this paper, we introduce an inference approach that uses spherical convolutional neural networks—
exploiting the symmetry structure of the signal and data domain—in conjunction with parameterized
classifiers [19, 20] in order to estimate likelihood ratios associated with the abundance of a cold
dark matter population directly from a binned map of the astrometric velocity field. We show that
our method outperforms established proposals based on the two-point correlation statistics of the
astrometric field, both in absolute sensitivity as well as its scaling with measurement noise.

2 Model and inference
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Figure 1: An illustration of the method and neural network architecture used in this work.

The forward model We consider a population of Navarro-Frenk-White (NFW) [21] subhalos
following a power-law mass function, dn/dm ∝ mα, with slope α = −1.9 as expected if the
population is sourced from nearly scale-invariant primordial fluctuations in the canonical Λ Cold
Dark Matter (ΛCDM) scenario. The concentration-mass relation from Ref. [22] is used to model the
concentrations associated with density profiles of individual subhalos.

Subhalos between 107–1010 M� are simulated, assuming the influence of lighter subhalos to be too
small to be discernable [10]. The subhalo fraction fsub, quantifying the expected fraction of the mass
of the Milky Way contributed by subhalos in the range 10−6–1010 M�, is taken to be the parameter
of interest. The spatial distribution of subhalos in the Galactocentric frame is modeled using results
from the Aquarius simulation following Refs. [23, 24]. The asymptotic velocities of subhalos in
the Galactocentric frame are taken to follow a truncated Maxwell-Boltzmann distribution [25, 26].
Once instantiated, the positions and velocities of subhalos are transformed into the Galactic frame,
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assuming R� = 8.2 kpc to be the distance of the Sun from the Galactic Center [27, 28] and
v� = (11, 232, 7) km s−1 its Galactocentric velocity [29].

Our datasets consist of the 2-dimensional angular velocity map of background sources on the celestial
sphere. Given a spherically-symmetric subhalo lens moving with transverse velocity vl, the expected
lens-induced velocity for a quasar at impact parameter b is given by [8]

µ(b) = 4GN

{
M(b)

b2

[
2b̂
(
b̂ · vl

)
− vl

]
− M ′(b)

b
b̂
(
b̂ · vl

)}
(1)

whereM(b) andM ′(b) are the projected mass of the subhalo at a given impact parameter distance b =
|b| and its gradient. An example of the induced velocity signal on part of the celestial sphere, projected
along the Galactic latitudinal and longitudinal directions and exhibiting dipole-like structures, is
shown in the leftmost column of Fig. 1.

We take our source population to consist of remote, point-like galaxies known as quasars which,
due to their large distances from the Earth, are not expected to have significant intrinsic angular
velocities. We assume the sources to be isotropically-distributed, although this assumption can be
easily relaxed for a realistic source sample. The velocity maps are assumed to be spatially binned,
and we use a HEALPix binning [30] with resolution parameter nside=64, corresponding to Npix

= 49,152 pixels over the full sky with pixel area ∼ 0.8 deg2. The values within each pixel then
quantify the average latitudinal and longitudinal velocity components of quasars within that pixel,
with the impact parameter b representing the vector from the center of a subhalo to the center of
the pixel. In order to enable a comparison with traditional approaches—which are generally not
expected to be sensitive to a cold dark matter subhalo population with next-generation astrometric
surveys [8, 10]—we benchmark using an optimistic observational configuration corresponding to
measuring the proper motions of Nq = 108 quasars with noise σµ = 0.1µas yr−1.

The power spectrum approach Ref. [10] introduced an approach for extracting the astrometric
signal due to a dark matter subhalo population by decomposing the observed map into its angular
(vector) power spectrum. The power spectrum is a summary statistic ubiquitous in astrophysics and
cosmology and quantifies the amount of correlation contained at different spatial scales. In the case of
data on a sphere, the basis of spherical harmonics is often used, and the power spectrum then encodes
the correlation structure on different multipoles `. The power spectrum effectively captures the linear
component of the signal and, when the underlying signal is a Gaussian random field, captures all of
the relevant information contained in the map(s) [31]. The expected signal in the power spectrum
domain can be evaluated semi-analytically using the formalism described in Ref. [10] and, assuming
a Gaussian likelihood, the expected sensitivity can be computed using a Fisher forecasting approach.
We use this prescription as a comparison point to the method introduced here.

While effective, reduction of the full astrometric map to its power spectrum results in loss of
information; this can be seen from the fact that the signal in the leftmost column of Fig. 1 is far from
Gaussian. Furthermore, the existence of correlations on large angular scales due to e.g., biases in
calibration of celestial reference frames [32] or systematic variations in measurements taken over
different regions of the sky introduces degeneracies with a putative signal and precludes their usage
in the present context. For this reason multipoles ` < 10 were discarded in Ref. [10], degrading the
projected sensitivity.

Simulation-based inference with parameterized classifiers Recent advances in machine learning
have enabled methods that can be used to efficiently perform inference on models defined through
complex simulations; see Ref. [33] for a recent review. Here, we make use of neural likelihood-ratio
estimation [19, 20, 34–37], previously applied to the problem of inferring dark matter substructure
using observations of strong gravitational lenses [38] and cold stellar streams [39].

Given a classifier that can distinguish between samples {x} ∼ p(x | θ) drawn from parameter points
θ and those from a fixed reference hypothesis {x} ∼ p(x | θref), the decision function output by the
optimal classifier s(x, θ) = p(x | θ)/(p(x | θ) + p(x | θref)) is one-to-one with the likelihood ratio,
r(x | θ) ≡ p(x | θ)/p(x | θref) = s(x, θ)/(1− s(x, θ)), a fact appreciated as the likelihood-ratio
trick [19, 40]. The classifier s(x, θ) in this case is a neural network that can work directly on the
high-dimensional data x, and is parameterized by θ by having it included as an input feature. In
order to improve numerical stability and reduce dependence on the fixed reference hypothesis θref ,
we follow Ref. [37] and train a classifier to distinguish between data-sample pairs from the joint
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distribution {x, θ} ∼ p(x, θ) and those from a product of marginal distributions {x, θ} ∼ p(x)p(θ)
(defining the reference hypothesis and in practice obtained by shuffling samples within a batch) using
the binary cross-entropy (BCE) loss as the optimization objective.

Extracting information from high-dimensional datasets Since our dataset consists of a velocity
field sampled on a sphere, we use a spherical convolutional neural network in order to directly learn
useful representations from these maps that are efficiently suited for the downstream classification
task. Specifically, we make use of DeepSphere [41, 42], a graph-based convolutional neural network
tailored to data sampled on a sphere. Starting with 2 scalar input channels representing the two
orthogonal (Galactic latitude and longitude) components of the velocity vector map,1 we perform a
graph convolution operation, increasing the channel dimension to 16 followed by a batch normal-
ization, ReLU nonlinearity, and downsampling the representation by a factor of 4 with max pooling
into the next coarser HEALPix resolution. Pooling leverages scale separation, preserving important
characteristics of the signal across different resolutions. Four more such layers are employed, increas-
ing the channel dimension by a factor of 2 at each step until a maximum of 128, with maps after the
last convolutional layer having resolution nside=2 corresponding to 48 pixels. At this stage, we
average over the spatial dimension (known as global average pooling [43]) in order to encourage
approximate rotation invariance, outputting 128 features onto which the parameter of interest fsub
is appended. These features are passed through a fully-connected network with (1024, 128) hidden
units and ReLU activations outputting the classifier decision ŝ by applying a sigmoidal projection.

105 maps from the forward model were produced, with 15% of these held out for validation. The
likelihood-ratio estimator was trained using a batch size of 64 for up to 50 epochs with early stopping
if the validation loss had not improved after 10 epochs. The ADAM optimizer [44] was used with
initial learning rate 10−3 decayed through cosine annealing. A coarse grid search was used to inform
the architecture and hyperparameter choices. Experiments were performed on RTX8000 GPUs at
the NYU Greene computing cluster. Figure 1 presents an illustrative summary of the neural network
architecture and method used in this work.
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Figure 2: (Left) The expected test statistic using the machine learning-based method introduced in this
work (red line) compared with existing approaches using power spectrum summaries with different
multipole thresholds (blue lines). (Right) Scaling of the expected sensitivities with instrumental noise.

3 Experiments on simulated data

We evaluate our trained likelihood-ratio estimator on maps drawn from a benchmark configuration
motivated by Refs. [23, 24], containing 150 subhalos in expectation between 108–1010 M� and
corresponding to fsub ' 0.2. The left panel of Fig. 2 shows the expected log-likelihood ratio

1We note that by representing the input angular velocity vector field in terms of two input scalar channels,
we break the desired rotation equivariance of spherical convolutions due to differences in how scalar and vector
representations transform under rotations. Although this will have a downstream effect on rotation invariance, a
detailed study of how this influences the performance of our model is beyond the scope of this paper.
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test-statistic (TS) as a function of substructure fraction fsub for this nominal configuration. This is
obtained by evaluating the trained estimator on 100 test maps over a uniform grid in fsub and taking
the point-wise mean. Corresponding curves using the power spectrum approach are shown in blue,
using minimum multipoles of ` ≥ 5 (dashed) and ` ≥ 10 (solid). Thresholds corresponding to 1- and
2-σ significance assuming a χ2-distributed TS are shown as the horizontal grey lines. We see that
sensitivity gains of over a factor of ∼ 2 can be expected for this particular benchmark. No significant
bias on the central value of the inferred DM abundance relative to the overall uncertainty scale is
observed.

The right panel of Fig. 2 shows the scaling of expected 1-σ uncertainty on substructure fraction fsub
with assumed noise per quasar, keeping the number of quasars fixed (red, with the line showing the
median and shaded band corresponding to the middle-95% containment of the uncertainty inferred
over 50 test datasets) compared to the power spectrum approach (blue lines). A far more favorable
scaling of the machine learning approach is seen compared to the power spectrum approach, suggest-
ing that it is especially advantageous in low signal-to-noise regimes that are generally most relevant
for dark matter searches. In the extended version of this paper [45], we perform further experiments
to test the susceptibility of our analysis to an expected source of systematic bias—measurement
noise correlated on large spatial scales—and show that this is not expected to substantially affect the
accuracy of our method.

4 Conclusions and outlook

We have introduced a method to analyze astrometric datasets over large regions of the sky using
techniques based on machine learning with the aim of inferring the lensing signature of a dark
matter substructure. We have shown our method to be significantly more sensitive to a cold dark
matter subhalo population compared to established methods based on global summary statistics,
with more favorable scaling as a function of measurement noise. Since the collection and reduction
of astrometric data is an expensive endeavor, the use of methods that can take advantage of more
of the available information can be equated to long periods of data-taking, underscoring their
importance. Additionally, unlike the power spectrum approach, the current method does not require
the construction of a numerically-expensive estimator to account for non-uniform exposure, selection
effects, and instrumental noise in realistic datasets. These, as well as any other modeled observational
effects, can be incorporated directly at the level of the forward model.

We have focused in this work on assessing sensitivity to a cold dark matter-like subhalo population
with quasar velocity astrometry, which is within the scope of upcoming radio surveys like the
SKA [15, 16]. Our method can also be applied in a straightforward manner to look for the acceleration
lensing signal imprinted on Milky Way stars, in particular sourced by a population of more compact
subhalos than those expected in the cold dark matter scenario. These features are expected to imprint
a larger degree of non-Gaussianity compared to the signal explored here (as can be seen, e.g., from
Fig. 1 of Ref. [10]), and machine learning methods may provide larger relative sensitivity gains
when deployed in that context. Such analyses are within purview of the upcoming Roman exoplanet
microlensing survey [46] as well as future Gaia data releases.

Several improvements and extensions to the method presented in this paper are possible. The use
of architectures that can equivariantly handle vector inputs [47] can aid in learning more efficient
representations of the astrometric map. Using convolutions based on fixed rather than learned filters
can additionally reduce model complexity and produce more interpretable representations [48–52].
The use of methods for likelihood-ratio estimation that can leverage additional latent information
in the forward model can significantly enhance the sample efficiency of the analysis [34–36, 53].
We leave the study of these extensions as well as application of our method to other dark matter
population scenarios to future work.

Astrometric lensing has been established as a promising way to characterize the Galactic dark matter
population, with theoretical progress in recent years going in step with advances on the observational
front. While this work is a first attempt at bringing principled machine learning techniques to this
field, with the availability of increasingly complex datasets we expect machine learning to be an
important general-purpose tool for future astrometric dark matter searches.

We refer to the exended version of this paper [45] for additional details on the analysis presented here.
Code used to produce the results in this paper is available at https://github.com/smsharma/
neural-global-astrometry.
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