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Abstract

Particle-In-Cell (PIC) methods are frequently used for kinetic, high-fidelity simula-
tions of plasmas. Implicit formulations of PIC algorithms feature strong conserva-
tion properties, up to numerical round-off errors, and are not subject to time-step
limitations which make them an attractive candidate to use in simulations fusion
plasmas. Currently they remain prohibitively expensive for high-fidelity simulation
of macroscopic plasmas. We investigate how amortized solvers can be incorporated
with PIC methods for simulations of plasmas. Incorporated into the amortized
solver, a neural network predicts a vector space that entails an approximate solution
of the PIC system. The network uses only fluid moments and the electric field as
input and its output is used to augment the vector space of an iterative linear solver.
We find that this approach reduces the average number of required solver iterations
by about 25% when simulating electron plasma oscillations. This novel approach
may allow to accelerate implicit PIC simulations while retaining all conservation
laws and may also be appropriate for multi-scale systems.

1 Background

The dynamics of plasmas are governed by the Vlasov-Maxwell equations, which describe the self-
consistent time-evolution of the plasmas distribution function in phase space and the electromagnetic
field. While approximations can be made to derive reduced fluid models from this equation set, many
situations require to resolve kinetic effects in simulations. Particle-in-cell (PIC) algorithms power
predictive high-fidelity kinetic simulations of fusion plasmas, implemented for example in the XGC
code [1]. Such simulations resolve complicated multi-scale interactions on a kinetic level in order to
uncover the physics that drive turbulent transport in nuclear fusion experiments [2, 3, 4]. Simulations
of macroscopic systems which employ kinetic formulations of the physics model quickly become
prohibitively expensive, even for leadership class, pre-exascale compute facilities. Researchers are
therefore constantly implementing advanced parallelization and optimization methods, often tailored
to specific target hardware architectures, in order to speed up such codes [5, 6, 7, 8, 9]. In this
contribution we are reporting on the development of a machine learning aided amortized solver that
accelerates PIC simulations. In particular, we focus on the method described by Chen et al. [10, 11],
which has been adapted for the XGC code to study electromagnetic phenomena in fusion plasmas
[12].
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PIC algorithms couple the evolution of plasma distribution function and electromagnetic fields in a
self-consistent manner. An ensemble of marker particles represents the plasmas distribution function.
Their coordinates typically assume continous values, i.e. a Lagrangian description is used. The
electromagnetic field on the other hand is commonly discretized in a spatial grid. Evolving this
system in time happens is a four-step process. First, the particles are pushed by integrating their
equations of motion. Second, the electric current and mass densities are evaluated on the grid, using
the updated particle coordinates. Third, the electromagnetic field is updated using the new source
terms. And finally, electromagnetic forces on the individual particles are calculated from the updated
field. Implicit formulations of this algorithm can be formulated as to conserve energy and charge up
to numerical round-off errors [10, 11].

Time-stepping of implicit PIC algorithms requires to solve a system of non-linear equations. Jacobian-
free Newton Krylov methods, where GMRES is a popular choice for the Krylov method, are known
to effectively solve such systems [10]. However, to evaluate the effect of the systems Jacobian
acting on a vector requires to evaluate the systems time-stepping loop. This is the most expensive
part of implicit PIC algorithms and it is desirable to minimize the number of GMRES iterations
required to integrate the system in time. In this contribution we explore how machine learning can be
used to minimize the number of GMRES iterations required to advance the PIC system in time. In
particular, Neural Networks are trained to suggest vectors which augment the initial Krylov space
of GMRES iterations [13, 14, 15]. Interfacing a predictive model with a robust iterative solver has
several advantages when aiming to accelerate PIC simulations of plasmas. First, the simulation still
obeys all conservation laws inherent to the used discretization. Meeting this condition is crucial
to ensure physically correct simulations. Second, by predicting a set of augmentation vectors, the
model is required to predict only values of order unity. Any scaling of the model output to simulation
quantities is handled by established linear algebra routines. This approach is of great importance
since PIC algorithms are often used to solve multi-scale problems where no single characteristic scale
can be defined for the physical quantities in the system. If a model were to predict physical quantities
it would eventually be required to make predictions over multiple orders of magnitude, which is a
hard problem. By requiring only order unity quantities as output of the model, the approach presented
here circumvents this problem.

Other contemporary approaches that aim to accelerate numerical simulations mostly target systems
that are described by a set of partial differential equations on an eulerian grid, such as the Navier-
Stokes fluid equations. One thread of research aims to develop surrogate models, for example
physics-informed neural networks [16] while other approaches use machine learned sub-grid models
to accelerate simulations [17, 18]. Properly trained, such models allow to run coarse-grid simulations
that include the same level of detail as fine-grid models and result in speed-ups up to 100x. However,
the hybrid Lagrangian-Eulerian structure of PIC methods is not readily amenable to such approaches.

2 Interfacing an implicit PIC solver and predictive machine learning models

Considering a collisionless, electrostatic plasma, an implicit discretization of the Vlasov-Ampere
system can be formulated as
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Here xp and vp denote position and velocity of particle p,4t denotes the time step length and qp and
mp denote the particles charge and mass respectively. Superscript indices denote the time step and
half-step quantities are given by an arithmetic mean, xn+1/2 =

(
xn+1 + xn

)
/2. The electric field

E is discretized on a periodic domain zi = i4z ∈ Lz , where i = 0 . . . Nz − 1 and4z = Lz/Nz .
The vaccuum permittivity is denoted as ε0 and SM[·] denotes a binomial smoothing operator. The
electric current is denoted as j and 〈·〉 denotes spatial averaging.

Given particle coordinates and the electric field at time step n, xn, vn, En, Eqs. 1 guides the time
evolution of the system. Only for the physically correct xn+1, vn+1 and En+1 do these equations
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(a) Convolutional neural network architecture used
in the amortized solver that maps simulation pro-
files onto a set of naug augmentation vectors
v1, . . . vnaug .

(b) Loss over the test set, grouped by the number of
augmentation vectors naug returned by the model.

Figure 1: Network architecture (left) and test losses (right)

hold. Re-casting Eqs. 1 as a set of non-linear equations G(E({xp}, {vp})) = 0 allows to solve this
system for the correct values at t = (n+ 1)4t using Newton’s method. That approach requires to
solve the linear system of equations

∂G

∂E

∣∣∣∣k δEk = −G(Ek) (2)

at each Newton iteration k. Here we denote the iterative solution as δEk = Ek+1 − Ek. Probing
Jacobian-vector products ∂G/∂E|kv by evaluating Gateaux derivative, Eq. 2 is solved using GMRES,
an iterative Krylov subspace method. Each evaluation of ∂G/∂E|kv evaluates the entire four-step
PIC loop. It is thus desirable to reduce the number of iterations to converge the residual below the
level of tolerance.

Neglecting preconditioning, the number of GMRES iterations required to solve a system Ax = b
within a prescribed residual tolerance may be reduced by starting with a good initial guess. We
therefore train a machine learning model to suggest vectors

{
v1, . . . , vnaug

}
such that an initial guess

A−1b lies closely in V . In particular, the solution vector x is decomposed as

x =

naug∑
j=1

αjvj + x̃, (3)

where xv =
∑

j αjvj ∈ V and x̃ ⊥ V and V = span
(
v1, . . . , vnaug

)
. The coefficients αj are

recovered by inserting the decomposition x = xv + x̃ into Ax = b, forming the scalar products
between this equation and the vectors {Avj}naug

j=1 , and then solving the resulting system for αj .

Forming b̃ = b−
∑naug

j=1 αjAvj we then proceed to solve

Ax̃ = b̃ (4)

and reconstruct x = x̃+
∑naug

j=1 αjAvj . This projection into a space perpendicular to V , the solution
of Eq. 4, and the subsequent back-projection taken together constitute the amortized solver.

A convolutional neural network, shown in Fig. 1a, maps the electron density profile ne (z), the Electric
field E(z) profile and a one-hot encoding of simulation parameters onto {vj}naug

j=1 . In particular,
we one-hot encode the initial profiles on the Fourier Basis, which allows to perform inference on
linear combinations formed over the initial profiles of the training set. The profiles are concatenated
and feed into two convolutional layers with 4 and 16 channels respectively. The one-hot encoded
simulation parameters feed into two fully-connected MLP layers with 32 neurons each. The output of
these channels are flattened and merge into two fully-connected layers which are fed into the output
layer of size Nz × naug . We train this network on data from a series of simulations where the initial
positions of 32, 768 electrons is sampled from profiles of the form ne (z, t = 0) = A · f(kz) with
A ∈ {1, 2, 5, 10} × 10−3, f ∈ {sin, cos}, k ∈ {1, 2}. The initial positions of 32, 768 singly charged
ions is sampled from a uniform distributions and both electrons and ions are initially cold. These
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initial conditions on the particles are chosen as to excite electron plasma oscillations. The fields are
evaluated on a grid with Nz = 64 and Lz = 4π. These 16 reference simulations are advanced with a
timestep of4t = 1 from T = 0 to T = 30. This yields 480 training profiles.

Targeting only the first Newton iteration, the neural network is trained by minimizing the orthogonal
projection of

{
δEk=1

}
over the vector space spanned by the model output, as described by Trivedi

et al. [19]

L = argmin
ŷ∈span(v1 ...,vnaug )

‖ŷ − δEk=1‖2
‖δEk=1‖2

+ λ ‖triu
(
V ∗ V tr

)
‖2. (5)

To calculate the projection, the output of the model V is subject to a QR factorization, Q,R = qr (V )
[20] and the projection is calculated as ŷ = Q · Q′ · δEk=1. Additionally, the last term penalizes
collinearity of output vectors. Here triu(A) = {ar,s}r<s denotes the upper triangular part of a square
matrix and V =

[
v1| . . . |vnaug

]
.

To identify optimal hyperparameters of the network, the 480 profiles are split 80%/20% into a
training set and a test set. The network is trained for 200 epochs to minimize Eq. 5 over the training
set. We use ReLU, tanh, and swish [21] activation functions, vary the size of the convolution filters
used in both convolutional layers, choosing from {3, 5, 7, 9, 13}, vary dropout probabilities in fully
connected layers [22] over {0.1, 0.2, 0.3}, vary λ ∈ {10−3, 10−4, 10−5} vary the initial learning
rate from {10−2, 10−3, 5× 10−4}, and use ADAM [23], RMSProp and SGD optimizers. Average
loss over the test set serves as the metric to evaluate optimal hyperparameters. Figure 1b shows a
sub-set of the training losses for various naug , λ and dropout probabilities. We observe that more
augmentation vectors results in lower per-sample loss. Additionally we observe only little over-fitting
for naug = 8, 16. From this scan we identify ReLU activation functions, convolutional filters of
width 3, a Dropout probability of 0.2, λ = 10−4, as ideal parameters and optimize using the ADAM
algorithm with an initial learning rate of 0.001. Training was performed on nVidia V100 GPUs,
in less than 2 hours of total computation time, using the Flux library [24, 25]. Simulation data for
training and inference was produced using this code 1. Instructions on how to generate the data are
available from the author upon request.

(a) ne,t=0(z) = 10−2 [0.1 cos(2z) + 0.9 sin(z)]. (b) ne,t=0(z) = 3× 10−3 [0.5 sin(z) + 0.5 cos(2z)].

Figure 2: Residuals at various GMRES iterations of the original and amortized solver using naug ∈
{8, 16, 32, 48}, averaged over an entire simulation.

The performance of the trained amortized solver is evaluated on simulations where the initial positions
of the electrons are sampled from ne,t=0(z) = A [a1f1(k1z) + a2f2(k2z)]. Ions are again sampled
from a uniform distribution and both particles are cold. Initial profile parameters are chosen as
f1, f2 ∈ {sin, cos}, k1, k2 ∈ {1, 2}. Figures 2a and 2b show the residual at each GMRES iteration
in these simulation, averaged over all 30 timesteps. The thick blue lines denote residuals observed in
simulations using a plain GMRES solver and the thin, colored lines show residuals observed when
using the trained amortized for naug = 8, 16, 32, 48. Using naug = 8 the average residuals of the
amortized solver are only slightly smaller than those of plain GMRES. For naug = 16, the average
residuals of the amortized solver are of the same magnitude as those of plain GMRES but after its

1https://github.com/rkube/picfun
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following iteration ahead. That is, the amortized solver requires one less iteration to converge to the
same tolerance as plain GMRES. For naug = 32 and naug = 48, the amortized solver requires two
fewer iterations to converge the residual to the same tolerance as the plain GMRES.

In conclusion, we demonstrate the feasibility to accelerate plasma simulations using implicit PIC
methods with a machine-learning based amortized solver. For simulations of electron plasma
oscillations the number of required GMRES iterations per first Newton iteration may be reduced
from about 7 to about 5. The fidelity of the accelerated simulations is unmodified and they retain
all conservation properties. Future work will focus on re-formulating the amortized solver to make
use of more direct Krylov space augmentation techniques as discussed for example in [13, 14, 19].
We hope to achieve a net speed-up of the simulations using such techniques. Finally, we aim to
investigate how the performance of the amortized solver depends on the training set and explore
performance for other types of simulations such as ion acoustic waves.
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
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• Did you include the license to the code and datasets? [Yes] See ...
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proprietary.
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Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The number of required GMRES iterations for the
original simulation and the simulation using the amortized solver are shown in Figure
3. This figure shows that, after projecting out the predicted subspace, the amortized
solver reaches the same relative residual tolerance as the original solver in about 1 or 2
iterations less. We calculate the 25% speedup as 5/7. This backs up the claim made
in the abstract. We hope to achieve a net speed up when implementing more direct
Krylov space augmentation techniques as stated in the last paragraph. We discuss how
our method is appropriate for multi-scale problems in the second paragraph of page 2.

(b) Did you describe the limitations of your work? [Yes] We explicitly state that we target
only electron plasma oscillations and use cold ions. We also state that we aim to
investigate how the performance of the amortized solver depends on the training set in
more detail. Of course the chosen convolutional architecture of the network was also
influenced by the type of simuation boundary conditions and we explicitly state that
we use periodic boundary conditions

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
work targets applications in plasma physics research and magnetic fusion energy
research. The authors are not aware of any negative impact stemming from these areas
of research.
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(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] The code is
given as a footnote on page 4. The data can be reproduced given the code and the
description made in the text. We also state that both are available upon request from
the authors (which they are).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The training details, data splits, hyperparameters and criteria for
how we chose optimal hyperparameters in inference are listed on page 3 and 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Error bars for inference are shown in Figure 2
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We disclose the type of GPUs used
for training on page 4 (nVidia V100), as well as the time for training, and resources
in the acknowledgements. The walltime of the PIC simulations was not recorded.
But a single simulation can be performed in about 5-10 minutes on an 2.7 GHz IBM
POWER9.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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