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Abstract

The recent increase in frequency and severity of natural disasters is a clear indi-
cation of an immediate need to address the cascading impacts of climate change.
However, climate change cannot be measured directly. In a weather cycle, river
discharge is the end result of any hydrologic process, and thus directly measures
the effect of two major parameters used to measure impacts of climate change;
Temperature and Precipitation. Unlike current methods that are able to infer climate
change patterns over a long period of time, river discharge is an effective proxy for
measuring effects of climate change within a short period of time. Unfortunately,
current statistical and physics-based models neither take full advantage of hy-
drometeorological information encoded in over 100 years of historical hydrologic
data nor are they applicable on a global scale. In this work, we train Long Short
Term Memory (LSTM) Recurrent Neural Network models on satellite observations
and daily discharge from gauged basins to predict discharge in ungauged basins.
Our models show Kling-Gupta and Nash-Sutcliffe Efficiency scores of 85% and
81% respectively in ungauged basins with limited to no existing data, while the
latest state-of-the-art process-based hydrology models show performance between
0% and 50% in similar circumstances. Applying techniques like ours will allow
accurate predictions in river basins across the world, the majority of which do not
have in situ measurements.

1 Introduction

Anthropogenic climate change and explosive population growth are straining already scarce water
resources and the resulting impact is borne in many crucial sectors; Agriculture, renewable energy,
and manufacturing among others [9, 19, 20]. Therefore, there is a need for near real-time and accurate
systems to measure the direct impact of climate change on water resources. River discharge is the
end result of all hydrologic processes within a river basin, and as such, can be used as a proxy for
measuring increased surface melting and runoff, temporary injection of melt water to the bed of
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grounded glaciers, and hydrofracturing, i.e., melt water-induced ice shelf collapse [2], all of which
are key indicators of increase in global temperature. However, there is limited measurement of river
discharge on a global scale, which has hampered the ability to measure the true depth, scale, and pace
of climate change.

Traditionally, river discharge has been measured in situ using water gauges strategically placed
along the river. However, this approach does not scale well to the global level. In a weather cycle,
hydrometeorology variables combine to produce the flow of water in rivers (discharge) and as such,
can be used to estimate the amount of river discharge in a hydrologic cycle. Fortunately, these
variables are recorded globally using numerous satellite constellations that rotate the earth at regular
intervals. Machine Learning approaches are able to encode domain knowledge and leverage the
spatial-temporal relationship between hydrometeorology variables (satellite data) and in situ discharge
data. This opens up the opportunity for more accurate river discharge predictions on a global scale,
especially for the majority of the global rivers, which have no in situ data.

In this work, we demonstrate improved performance of machine learning methods that leverage
both spatial and temporal information existing in hydrometeorologic data to improve daily discharge
prediction. We demonstrate that using a Long Short Term Memory (LSTM) Recurrent Neural
Network, we are able to achieve Kling-Gupta Efficiency (KGE) and Nash-Sutcliffe Efficiency (NSE)
1 scores of 85% and 81% respectively on held-out discharge data drawn from a different distribution,
outperforming the latest state-of-the-art process-based hydrology models in ungauged basins with
limited to non-existing data.

These experiments and results demonstrate the impact of integrating spatial and temporal information
in improving prediction of daily river discharge using modern machine learning algorithms in a
physical sciences field that relies heavily on both conventional time-series and process-based models
for analysis

2 Related Work

Discharge measurement: In situ measurements are the standard approach for measuring daily river
discharge where water gauges are strategically placed at gauge stations along a river network. In
places where gauge stations do not exist, process-based models, for example the Manning Equation
(Eq. 1) for daily discharge is used if the geomorphological characteristics of the river are known.
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Where Q is discharge (m3S−1), A is the cross-sectional area (m2), W is width (m), S is
slope(unitless), the index i specifies the cross section and t specifies the day. However, process-based
models tend to degrade when trained on non-independent and identically distributed data(i.i.d), i.e.,
data drawn from varying geographical regions. This means that it is difficult to transfer hydrological
information learnt about one river basin to another river basin, making it difficult to predict discharge
for basins with little to no data.

Machine Learning in Hydrology: The success of machine learning has largely been due to its
ability to extract complex spatial and temporal patterns existing in the training data, thus overcoming
the drawbacks of conventional time-series models. Long-Short Term Memory (LSTM) Recurrent
Neural networks [11] have demonstrated exceptional performance in predicting discharge in gauged
basins [14, 13, 3] at both local- and continental-scale. Models trained on over 100 years’ worth
of historical data have demonstrated the ability to extract inherent patterns in large hydrological
datasets whose dynamics are dependent on various direct and indirect interconnected phenomenon,
thus opening up the possibility of solving a longstanding problem of regional modelling via transfer
learning [17]. However, machine learning models are stochastic and non-deterministic in that they
tend to encode correlation in the training data instead of causation. Furthermore, machine learning
models require large training data in order to make better predictions, which do not exist for a
majority of the basins in the world. Finally, unlike process-based models, ML models provide
blackbox predictions, which are not easily explainable or interpretable. These make them less useful
for modelling physics-driven processes in which the interactions between the underlying variables
must be interpretable in order to enhance broader understanding.

1 KGE and NSE are the common performance metrics for measuring accuracy of river discharge predictions
in hydrology
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3 Methods

3.1 Dataset and Problem Definition

Our ultimate goal is to predict the average amount of water flowing through a particular gauge station
per day. Our data is from 1980 to 2010. To achieve this goal, we leverage in situ discharge values
obtained from the Government of Canada [7], climate forcing variables from Google Earth Engine [6],
simulated discharge from the Princeton discharge database [15], river reach widths obtained from
Landsat images [4], and river classes originally defined by C. B. Brinkerhoff et. al [1].

Although 17 classes were initially defined in [1], we focus on the five largest classes as a proof-of-
concept for our proposed approach. We make the following data selection decisions. First, although
previous studies [5] have shown that width is a strong predictor of daily river discharge, Landsat4-8
have repeat cycles of 16 days, with some overhead days being too cloudy to pick out river width
outlines. As such, we use other features to train an intermediate model to impute widths for the
missing days. Secondly, we only consider gauge stations with more than two years of in situ discharge
data and at least five upstream reaches. This is to ensure that there is sufficient data to quantify the
impact of upstream hydrometeorological factors towards daily discharge at a given gauge station.
Finally, we difference the non-static independent variables to remove temporal dependence and
normalize all data to ensure that they are within the same range, thus maintaining general distribution
and ratios in the training data.

3.2 Sequential Learning

The standard approach in machine learning is to train, validate, and test models on data drawn
from the same distribution (i.i.d); applications of these techniques for river discharge predictions
are common in the literature [3, 13, 14]. However, we focus on training models that can perform
well on previously unseen data (i.e., ungauged river basins), which is needed for the majority of
basins, where in situ data are unavailable. Section 4 reports results obtained via transfer learning.
By modelling daily discharge prediction as a sequential problem, we can utilize the full power of
LSTMs and the historic context of related physics of the hydrologic systems to improve predictions
across time and space, both in gauged and ungauged basins. Our preliminary analysis led us to
use a Bi-directional LSTM model with 4 layers because additional layers showed no substantial
improvement in performance. Furthermore, we choose Swish [18] as the activation function after
comparison with existing state-of-the-art activation functions. Finally, we train our Bi-directional
LSTM model with L2 regularization to prevent over-fitting and present the results in Section4. In
practice, we train n models where n corresponds to the number of classes selected.

3.3 Training and Evaluation Metrics

Both single model and ensemble models [13, 3] trained on basin-wide datasets have demonstrated
remarkable results in predicting daily discharge. However, the Mackenzie River basin (where we
perform our analyses) has extreme variations in the average discharge across its tributaries and as such,
a single model performed relatively similar to the current state-of-the-art process-based-models[10].

As stated in 3.1, we train five models, one for each class of rivers considered. Whereas we designed
multiple experiments with varying volumes of observations and meteorological variables to quantify
the impact of data quantity and quality towards the model performance, we only report results for one
experiment that combines dynamic and static features at a particular gauge station and one upstream
reach.

Consider a class with n stations, we can create all possible combinations of classes using Equation(
Eq. 2) that vary the type and volume of data available to the model.

nCk =
n!

k!(n− k)!
; k = 1, 2, ..., n− 1 (2)

Then, we train a model on each of the selected sets and test on (n−k) held-out stations. For large sets,
we randomly select 20 sets at most. Our results consist of distributions across these sets to reduce
bias towards a single set of high-performing gauge station datasets. Finally, we choose to report
our results based on three major metrics used in hydrology to evaluate river discharge prediction
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performance; Nash-Sutcliffe Efficiency (NSE) [16], Kling-Gupta Efficiency (KGE) [8], and Relative
Bias (RBIAS).

NSE is a normalized statistic that determines the relative magnitude of residual variance compared
to the measured data variance. NSE ranges between (−∞, 1] with NSE = 1 being the optimal
value. Values between 0.0 and 1.0 are generally viewed as acceptable while values ≤ 0.0 indicate
that the mean of observed values is a better predictor than the predicted value. KGE is based on
decomposition of NSE into its constituent components (correlation, variability bias and mean bias).
Like NSE, KGE ranges between (−∞, 1] with KGE = 1 being the desired value that indicates
perfect agreement between observed and simulated values. Positive KGE values are an indicator of
good model performance while negative values are considered undesirable.Finally, RBIAS quantifies
the relative systematic bias in the predicted discharge values. A positive or negative value indicates
corresponding bias in predicted values respectively while 0.0 shows no bias in the predicted values

Overall, a stable performance should always have KGE values higher than NSE, although it should
be noted that NSE and KGE values cannot be directly compared Knoben et al. [12].

4 Results

In Table 1, we report statistics of nCk combinations of predicted discharge across the five selected
classes in ungauged basins (previously unseen data). We compare our results to to the existing
state-of-the-art process based models [1] with average scores of NSE and KGE in the range of 0.0
to 0.5. Class one performs poorly as compared to other classes. This is mainly attributed to the
smaller widths for rivers in this class as compared other classes. River width is a stronger predictor
of discharge relative to other features [5]. Overall, models across the remaining classes are able to
generalize well across ungauged basins, as indicated by high values of NSE and KGE, and values of
RBIAS close to 0.0, indicating less deviation of models’ predictions from the actual observations.
These results strongly suggest that machine learning models are better at generalizing hydrological
information across ungauged basins compared to the existing state-of-the-art process based models.

Table 1: Statistical distribution of discharge prediction results in ungauged basins. With the exception
of class one, mean discharge across the remaining classes outperform state-of-the-art process-based
model predictions, which report NSE and KGE values in the range of 0.0 to 0.5.

River class 1 2 3 4 5

KGE Mean 0.17 0.60 0.71 0.47 0.54
Median 0.26 0.61 0.72 0.47 0.58

Max 0.73 0.88 0.86 0.81 0.86
Min -1.05 0.41 0.31 -0.04 0.07

NSE Mean -0.28 0.58 0.72 0.27 0.47
Median 0.10 0.62 0.74 0.41 0.50

Max 0.62 0.84 0.87 0.84 0.81
Min -4.77 0.26 0.35 -0.72 -0.54

RBIAS Mean 0.23 -0.03 -0.06 0.01 0.09
Median 0.17 -0.03 -0.07 -0.01 0.07

Max 1.95 0.30 0.47 0.79 0.71
Min -0.57 -0.29 -0.42 0.77 -0.44

5 Conclusion and Future Work

In this paper, we have demonstrated improved performance of machine learning approaches over
process-based models for predicting discharge in ungauged basins. However, categorizing basin-wide
rivers into classes is a less efficient method because of varying hydrometeorology characteristics
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across basins. Future work will improve river classification by adopting stream orders or Pfafstetter
units since these are more hydrologically-informed approaches for grouping rivers based on climatic
regions, geomorphological, and tributary characteristics. Furthermore, we hope to statistically
quantify the impact of additional training data, both qualitatively and quantitatively, towards model
performance. Finally, this work sets the stage to enable examination of constraints of process-based
modelling approaches for predicting river discharge and better characterizing how machine learning
based models can be used to model physical processes, not only in hydrology, but also in other other
physical sciences.

6 Broader Impact

The authors acknowledge that machine learning can be misused, but recognize no situation in which
their work, both written and implemented, can be misused. The authors believe that leveraging ma-
chine learning in hydrology will greatly improve discharge prediction and help to further understand
climate change and its impact on environmental health and economic development.
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