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Abstract

Seismic surveys are a valuable source of information for mineral exploration activi-
ties. We introduce a reflection seismic survey dataset acquired at four distinct hard
rock mining sites to stimulate the development of new seismic data interpretation
approaches. In particular, we provide annotations as well as a sound benchmarking
methodology to evaluate the transferability of supervised first break picking solu-
tions on our dataset. We train and evaluate a baseline solution based on a U-Net
and discuss potential improvements to this approach.

1 Introduction

The application of machine learning techniques and methodologies in geoscience and geophysics
is an active research area that is becoming increasingly important [1]. Seismology in particular
has a high potential for impactful contributions, as seismic data is often voluminous and hard to
comprehensively analyze, even for experts. Recent efforts have been made to gather and study
seismic datasets using machine learning [2–4], but the unavailability of data is a major impediment
for researchers. This is especially true for reflection seismic data acquired on-land as part of long-term
exploration and commercial mining activities. As a result, in this field, the growth of machine learning
applications is slowed, and published works can rarely compare different interpretation methods
without reimplementing them entirely.

Our primary goal is to provide a large reflection seismic dataset to the community in order to foster
the development of new machine learning applications for deep mineral exploration. Specifically,
we introduce a dataset of land seismic surveys captured across multiple mining sites, and provide a
benchmark for the evaluation of solutions to a fundamental preprocessing problem in the analysis
and interpretation of seismic data: first break picking [5]. To the best of our knowledge, this is the
first public contribution of a curated multi-survey seismic dataset focused on hard-rock environments.
The size of our dataset, which contains millions of seismic traces, will allow researchers to assess
how well their predictive models generalize across varied conditions. Each survey is also acquired
in 3D, meaning that seismic gathers can be analyzed in conjunction with 2D geopositioning data.
This should encourage the development of a new generation of machine learning approaches that
exploit the full richness of 3D surveys. Finally, we provide baseline evaluation results following our
benchmarking protocol for popular first break picking approaches, and provide new ideas on how to
interpret this data as well as how to incorporate prior knowledge to improve these baselines.
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Figure 1: Example of a shot gather taken from a 3D seismic survey that is part of our dataset. The
sections separated by green vertical lines correspond to changes from one receiver line to the next,
and are named “line gathers”. The dome-like pattern that repeats across all line gathers is typical; it is
caused by the variation in distance between receivers and source location. For each trace, the location
of the first arrival that should be “picked” by predictive models as part of our benchmark is drawn in
blue. The amplitudes of a single trace (highlighted in red) near the first arrival are plotted on the right.

2 Data description

Reflection seismology is a method used for geophysics exploration that is based on the analysis of the
propagation of elastic waves through solid or fluid materials. Here, we focus on land surveys where
the seismic energy sources are explosive charges. These sources produce shockwaves that travel
into the subsurface and that are affected by variations in acoustic impedance which correspond to
changes in lithology. The measurement of the reflected and refracted shockwaves at the surface using
receivers (or “geophones”) is used for characterizing and imaging interfaces between different types of
subsurface media. This imaging is fairly accurate in comparison with the results of other geophysical
exploration techniques, as it offers a cell resolution in the order of a few meters. It can also cover
surveys that stretch over tens of kilometers with reflection data up to several kilometers deep. Seismic
data however requires many processing steps before being used for subsurface interpretation, one of
which is first break picking, described in Section 3.

In its raw form, the seismic data we provide consists of energy measurements acquired following the
activation of individual sources one at a time, where each activation is called a “shot”. The series
of measurements recorded by a receiver for a single shot is called a “trace”, and the combination
of traces across multiple receivers is called a “shot gather”. Since receivers are usually arranged in
straight lines across survey areas, shot gathers can be visualized as 2D images where the horizontal
axis corresponds to the spatial extent of the receiver line and the vertical axis is time. In the case of
3D surveys, multiple receiver lines are set up in parallel, and shots are recorded across different lines
simultaneously; an example of a shot gather for multiple receiver lines is shown in Figure 1.

Our proposed dataset is composed of four 3D surveys acquired at unique mining sites in three
provinces of Canada: these are referred to as “Lalor”, “Brunswick”, “Halfmile” (short for “Halfmile
Lake”), and “Sudbury”. For one of the three sites (Lalor), the sampling rate of the receivers is 1 ms,
and it is 2 ms for the three other sites. For Sudbury and Lalor, the traces contain 1001 samples, and
for Halfmile and Brunswick, they contain 751 samples. Considering only the data that is usable for
our proposed benchmark (described in Section 4), the surveys vary in size, with 690 to 1,541 shots
and 8 to 28 receiver lines. When combined, they provide us with a total of 3913 shot gathers covering
an average of 10.38 receiver lines, for a total of 8.37M traces. The spatial coordinates of the sources
and receivers are also provided. Links to the raw data as well as additional statistics related to each
survey dataset are available online1.

Related works. Apart from the wiki-based list of [6], there does not seem to be a compendium or
review of seismic datasets published in the literature. This is not surprising, as seismic surveys are
rarely published due to their costly nature and due to the fact that they are mostly centered around
private commercial projects. Besides, we must note that seismic datasets can be used for numerous
tasks, and few datasets actually contain the raw (“pre-stack”) data required to train models on tasks
such as first break picking. For example, the benchmarks of [3, 7] focus on facies classification and
only provide a labeled seismic volume to be used for training and evaluation. Besides, even fewer
public datasets are land acquisitions, and the only ones listed in [6] (“Teapot dome”, “Stratton”) are
oilfield surveys. This means that our contribution to the literature of four new land surveys over
crystalline hard-rock terrain is quite unique.

1https://github.com/mila-iqia/hardpicks
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3 First break picking

The workflow required to turn raw seismic measurements into interpretable information regarding
subsurface interfaces is complex and involves multiple labor intensive steps by domain experts [8].
One of the first steps of this workflow is dubbed “first break picking” and consists in indicating
where the useful signal begins for every recorded trace. This requires distinguishing the onset of
the arriving seismic wave from the omnipresent background noise. Automated tools have long been
used to assist annotators in identifying first breaks based on trace statistics [5]. However, these tools
perform poorly on noisy traces due to their lack of contextual awareness. First break picking is labor
intensive, tedious, error-prone, and sometimes ambiguous, as shown in Figure 1. Correspondingly,
manual picking can vary in quality and affect the outcome of downstream data processing. This task
is therefore ideal for the development and testing of supervised machine learning approaches.

Related works. The interpretation of shot gathers as images, as shown in Figure 1, is quite convenient
for the training of predictive models based on Convolutional Neural Networks (CNNs). In fact, the
majority of recently published works on first break picking have opted for this approach [9–14]. Small
CNNs have also been specifically shown to be more robust than other simple network architectures
when trained on the gathers of a survey of an ore deposit [15]. For works that relied on larger CNNs
to increase the amount of contextual information available for picking, U-Net architectures [16] seem
to be the most popular and successful design choice [11–14]. This highlights the prominent position
of image processing approaches for first break picking, and entails that we should train and provide a
CNN as a baseline in our proposed benchmark. We must however stress that there is no evidence that
non-CNN approaches cannot compete with CNNs. We hope that the introduction of our multi-survey
dataset will allow new types of models to be designed and trained, and these would ideally take the
available geopositioning data into full consideration.

4 Benchmark methodology

Our benchmark is centered on the supervised training and evaluation of predictive models for the task
of first break picking. Along with our multi-survey dataset, we provide first break pick annotations
for 72.3% of traces in line gathers that are deemed valid by an expert based on both signal strength
and annotation quality. The annotations themselves are based on the predictions of simple picking
tools (based e.g. on STA/LTA ratios) that are then manually corrected by experts.

The main driver for our experiments is to determine whether trained models can generalize their
knowledge across survey sites. To reach such conclusions, we split the sites at our disposal into
different cross-validation folds. We believe that this is the ideal way to split multi-survey data, as
shuffling and splitting across the gathers of all surveys may lead to misleading results if the trained
models manage to overfit to the spatial or subsurface characteristics of particular regions. We elected
to use two sites in the training set, one site in the validation set and one site in the test set. To limit
the computational requirements of our experiments, we restricted this to four folds by requiring that
each site appears once in validation and once in test. We refer to these folds below using the name of
the sites used for validation and testing, and provide the full description of these folds on our website
(the link is provided in Section 2).

For the performance metrics, we consider the Mean Average Error (MAE), the Mean Bias Error
(MBE), and the Root Mean Squared Error (RMSE), where all errors are measured at the sample scale
(i.e., in terms of “pixels” in the gather images). We also rely on the Hit Rate at δ samples (HR@δpx),
defined as the fraction of annotated traces where the prediction error is smaller than δ samples. For
a given dataset fold, we conduct a random hyperparameter search over 50 trials. Each trial, we
train on two sites and evaluate on a third (the validation site). After 50 trials, the hyperparameter
configuration leading to the model with the highest validation HR@1px score is withheld, and 10
models are trained once again with this configuration, starting from different random seeds. These 10
models are finally evaluated on the test site to give a range of performance.

The baseline we propose is based on a U-Net architecture [16] where the encoder and decoder are
composed of stacks of fully convolutional blocks. The input to the model is a line gather which is
treated as an image with multiple channels; its first channel contains the seismic amplitude, and it is
complemented with three more channels containing the source-receiver distance and the distances
to the closest previous and next receivers on the same line. These distance channels are constant
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Figure 2: Distribution of HR@1px scores obtained on the validation site of each fold across 50 trials.
From left to right, the histograms correspond to Brunswick, Lalor, Sudbury, and Halfmile. Note the
more inconsistent results on Lalor, which is the only site with a 2 ms sampling rate.

Table 1: Metrics computed on the test site of each fold for the trial with the highest HR@1px metric
found on the validation site. Ten runs with different random seeds were performed, and the mean
plus-or-minus the standard deviation over these runs is shown. The Hit Rates (HR) are in percentage,
and the errors are in number of samples.

Test Site HR@1px HR@3px HR@5px HR@7px HR@9px RMSE MAE MBE

Sudbury 73.1 ± 0.5 93.9 ± 0.6 96.2 ± 0.6 97.5 ± 0.5 98.2 ± 0.5 35.1 ± 12.3 2.8 ± 1.2 1.2 ± 1.1
Brunswick 87.6 ± 1.4 96.4 ± 0.6 97.8 ± 0.6 98.3 ± 0.6 98.6 ± 0.6 50.2 ± 13.8 4.5 ± 2.3 3.8 ± 2.5
Halfmile 83.8 ± 0.5 92.6 ± 0.5 95.9 ± 0.6 97.9 ± 0.6 98.8 ± 0.6 35.2 ± 33.3 3.8 ± 4.3 2.9 ± 4.1
Lalor 76.3 ± 1.8 80.0 ± 1.7 82.7 ± 1.7 86.4 ± 1.9 89.0 ± 2.0 460 ± 74 124 ± 40 123 ± 40

along the time axis, and act as simple geospatial priors that the model can exploit. We use four data
augmentation operations during training. Firstly, gather images are randomly cropped so that they
have between 512 and 1024 samples on their time axis. Secondly, some traces inside each gather may
be randomly dropped (as if there was a gap in the receiver line) or added with null amplitudes (as if
an extra receiver was present but “dead”). Thirdly, we nullify the amplitudes of roughly 8% of all
traces in the gathers: this forces the model to rely more on contextual information. Finally, we flip
gather images along their receiver axis in order to increase the (perceived) diversity of the datasets.
Other augmentation operations were originally considered, but their impact was later found to be
marginal. The parameter values for the selected operations were found empirically on a small subset
of the available data before conducting the large-scale hyperparameter search.

For the optimization, we rely on Adam [17] and pick base learning rates uniformly across a logarithmic
scale of [10−5, 5 · 10−3]. We train for a maximum of 20 epochs and either never modify the learning
rate, or reduce it by multiplying it with a factor of 0.1 after either 5 or 10 epochs. The batch size
is fixed for all experiments at 16 line gathers. Early stopping is performed if the HR@1px on the
validation site does not improve for more than 4 consecutive epochs. For the encoder, we evaluate
ResNet blocks [18] with two different depths (18 and 34 total layers), and EfficientNet blocks [19]
under their “b0”, “b2”, and “b4” configurations. For the decoder, we explore three different levels of
complexity by scaling the number of feature maps carried over from the encoder. Specifically, we
use [256, 128, 64, 32, 16], [512, 256, 128, 64, 32], or [1024, 512, 256, 128, 64] feature maps, where
each number corresponds to the input depth for each of the five decoder blocks. Note that across all
potential hyperparameter configurations, our smallest model has roughly 14M trainable parameters
while the biggest model has 49M.

Figure 2 shows the distribution of model performance found on different validation sites during
our hyperparameter search, showing that many configurations can perform similarly well. The
performance of the best trial for each fold computed on the test site is presented in Table 1. We can
observe that performance on the Lalor test site is worse than for the test sites of other folds. This
could be explained by the different sampling rate used at Lalor which the predictive model did not
experience during training and validation. This shows that the transferability of a simple U-Net can
still be improved.
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5 Conclusion

We present a multi-site dataset of raw seismic traces and human generated annotations as well as
benchmark results for first break picking based on the U-Net architecture. By distributing this dataset,
we seek to promote the use of a standard evaluation methodology for trained models and to promote
the design and development of new models specifically tailored to process seismic data. In particular,
it is unclear whether the interpretation of seismic data as images is ideal, and hope researchers will
deviate from this approach if needed. In fact, there may already exist architectures designed for graph
or point cloud data processing (e.g., [20]) that could be better suited for first break picking.

Broader impact

We present a multi-survey dataset as well as a rigorous methodology for evaluating first break picking
algorithms. Our hope is that these contributions will drive the development of better models which
will help seismologists and geophysicists improve their toolset for the processing and interpretation
of seismic data. In the short term, this may save them a substantial amount of manual labor (or
significant outsourcing costs) when working with new surveys. Our efforts could also incentivize
some researchers to revisit older surveys with modern tools, and in the long term, revitalize existing
mining sites due to the discovery of new economical ore deposits. Our efforts to improve first
break picking solutions could also have indirect impacts on applications involving statics correction,
velocity inversion, traveltime tomography, and hazard assessment.
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