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Abstract

Sharpness-aware minimization (SAM) is a novel regularization technique that
takes advantage of not only the training error but also the landscape geometry
of model parameters to improve model robustness. Although SAM has demon-
strated the state-of-the-art (SOTA) performance in image classification, its applica-
bility to physical system is yet to be examined. An ideal testbed is neural-network
quantum molecular dynamics (NNQMD) simulations that accurately predict ma-
terial properties, but the stability of their trajectories is severely limited by ther-
mal noise. In this paper, we demonstrate for the first time that SAM regularizer
achieves an order-of-magnitude reduction of the out-of-sample error in potential
energy prediction using several SOTA models. Comparing NNQMD datasets with
distinct structural characteristics, we found that SAM consistently reduces the out-
of-sample error for a crystal dataset at high temperatures with enhanced thermal
noise, thus proving the concept of SAM-enhanced robust NNQMD, while no clear
trend was observed with an amorphous dataset. Our result suggests a possible cor-
relation between materials structure and model parameter landscape.

1 Introduction

Molecular dynamics (MD) simulations are widely used to computationally study material proper-
ties by following the trajectories of constituent atoms. Accurate prediction of potential energy is
essential for reliable MD simulations, but first-principles quantum mechanical (QM) calculations
to obtain ground-truth potential energy are computationally prohibitive. Neural network quantum
molecular dynamics (NNQMD) is revolutionizing MD simulations by predicting potential energy
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Figure 1: Snapshots of crystalline silicon carbide (a) and silicon dioxide glass (b), where spheres
represent carbon (cyan), silicon (blue) and oxygen (red) atom positions and cylinders indicate chem-
ical bonds. (c)-(e) Pair distribution functions for Si-Si, Si-C and C-C pairs at 300 K (black) and
900 K (red), respectively.

with QM accuracy using neural networks at a fraction of cost, thus allowing large spatiotemporal
MD simulations [Pun et al., 2019, Mailoa et al., 2019].

Despite numerous successes, most NNQMD applications are limited to materials under gentle,
near-equilibrium conditions [Jia et al., 2020], and NNQMD has rarely been applied to far-from-
equilibrium processes to date. Specifically, at high temperature, the prediction error in atomic forces
due to large thermal noise accumulates to produce unphysical behavior, which makes the simulation
numerically unstable for larger systems at longer times, i.e., fidelity-scaling problem [Rajak et al.,
2021]. While Rajak et al. [2020] attempted to alleviate the instability using active learning, their
practical applicability is limited in terms of scalability and system dependence . It is an urgent task
to find an alternative approach that is model- and system-agnostic without sacrificing the algorithmic
scalability, to improve model generalizability for far-from-equilibrium NNQMD simulations.

We claim that sharpness, a recent notion in machine learning community, could provide a clue to
solve the NNQMD instability problem. Sharpness of a neural network is defined as the sensitivity of
the training loss against the weight parameters perturbation. Sharpness has gained attention particu-
larly in recent years because an algorithm with sharpness regularization achieved the state-of-the-art
(SOTA) performance in the image classification tasks [Foret et al., 2020]. More importantly for
QMD applications, neural networks with regularized sharpness is shown to have strong robustness
against the noise as well as its high generalization ability [Sun et al., 2020]. Provided that the simu-
lation becomes unstable because of the combination of physical inaccuracy and numerical fragility,
it is natural to apply a regularizer, SAM, that improves physical fidelity (i.e. generalizability of a
model) and robustness.

In this paper, we examine the effect of sharpness regularization on the potential energy prediction
performance using SOTA graph neural network (GNN). We start with a technical summary of MD
simulation and sharpness regularization, followed by the main result that sharpness regularization
significantly improves the prediction performance on multiple material datasets.2 Our results also
indicate a correlation between the sharpness of the weight parameters and the nature of the potential
energy landscape.

2 Neural Network Quantum Molecular Dynamics

Molecular dynamics (MD) is an atomistic modeling method widely used in materials and chemical
sciences. By numerically solving Newton’s equations of motion, one obtains the complete history
of atomic positions, rN = {ri | i = 1, . . . , N} (N is the number of atoms) as well as materials

2https://github.com/ibayashi-hikaru/Sharpness_MD
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properties of interest. NNQMD is a newly emerged approximation scheme for MD simulation to
statistically predict potential energy and thereby provide approximate trajectories of atoms [Pun
et al., 2019, Mailoa et al., 2019].

Quantum Mechanical Simulation To generate training and test datasets, we use a reactive molec-
ular dynamics (RMD) method based on ReaxFF interatomic potential [van Duin et al., 2001] and
RXMD software [Nomura et al., 2020]. ReaxFF significantly reduces the computational cost com-
pared to other QM-based approaches while reproducing chemical reactions and charge transfer at
QM-level accuracy. We use two datasets with distinct structural characteristics, i.e., crystalline sil-
icon carbide (SiC) and amorphous silicon dioxide glass (a-SiO2), respectively shown in Figs. 1
(a) and (b). The two systems are thermalized at temperature 300 K for model training with and
without SAM, and 900 K for the evaluation of out-of-sample error and the model generalizability
against thermal noise. The glass structure of a-SiO2 system was obtained by melt-quench method
[Vashishta et al., 1990], resulting in a disordered network of chemical bonds.

To characterize the temperature effect on the atomic configuration, Figs. 1 (c) - (e) compare pair
distribution functions of SiC thermalized at 300 K and 900 K. Due to the enhanced thermal motion
by the elevated temperature of 900 K, the atomic positions deviate from training dataset, increasing
the likelihood for a trained model to face unseen atomic configurations.

Representation of Atoms Toward the natural representation of atomic data, graph representation
learned by GNN has been attracting great attention in materials and chemical science domains. In
practice, GNNs have shown higher performance than the naïve approach based on static descrip-
tors [Fung et al., 2021]. Several GNN models have been proposed for chemistry-related problems,
mostly focusing on molecular systems [Fung et al., 2021, Chen et al., 2019, Schütt et al., 2017, Xie
and Grossman, 2018]. GNN has also been used in material predictions involving periodic crystals,
surfaces [Dunn et al., 2020, Louis et al., 2020, Park and Wolverton, 2020, Xie and Grossman, 2018],
as well as MD simulations [Park et al., 2021].

Instability Issue and Related Works One of the key issues of NNQMD is its instability during
long-time simulations, where accumulated error often causes a breakdown of simulation. An al-
leviation of the instability is the active learning approach, where a model is adaptively retrained
on-the-fly by newly generated atomic configurations when the model prediction uncertainty exceeds
a prescribed threshold [Vandermause et al., 2020]. However, this approach is not scalable because
of its repeated training processes with a heavy cost. As an alternative approach, Rajak et al. [2021]
proposed a physics-based regularization founded on statistical mechanics. While they have success-
fully performed a billion-atom NNQMD simulation of light-induced polarization dynamics in led
titanate crystal, the proposed inductive bias is highly system-dependent, requiring a delicate tuning
of the bias strength to prevent catastrophic failure while preserving QM-level accuracy. In contrast,
the proposed SAM approach here is scalable and agnostic to a model or a system. More importantly,
SAM minimizes sharpness, which, by definition, increases the model stability as we discuss in the
next section.

3 Sharpness

Sharpness is defined to quantify the geometric property of the training loss surface with respect
to weight parameters [Keskar et al., 2016]. Given a training data S = {(x1, y1) , . . . , (xm, ym))},
weight parameter w, and a loss function ℓ((x, y), w), the training loss and test loss of a neural
network can be regarded as functions of w as follows.

L̂(w) :=
1

n

n∑
i=0

ℓ ((xi, yi) , w) and L(w) := E(x,y) [ℓ ((xi, yi) , w)] (1)

Sharpness quantifies the sensitivity of L̂(w) against the perturbations on w, formally defined as
follows.

max
∥ϵ∥2≤ρ

L̂(w + ϵ), (ρ > 0 : hyperparameter ) (2)
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History of Sharpness Intriguingly, sharpness has its origin in physics. The whole sharpness re-
search started with a finding in the research of complex systems that neural networks with high
generalization ability tend to have flatter (less sharp) minima [Hochreiter and Schmidhuber, 1995].
After decades have passed and deep neural networks gained popularity, an increasing number of em-
pirical results have suggested that a similar tendency also exists for deep neural networks [Keskar
et al., 2016, Dziugaite and Roy, 2017, Sagun et al., 2017, Yao et al., 2018]. A large-scale experiment
by Jiang et al. [2019] showed that sharpness defined in Eq. 2 has a particularly strong correlation
with generalization among various measures. Inspired by those intriguing observations, sharpness
has been implemented in practical optimization algorithms [Chaudhari et al., 2019], and one of those
algorithms, SAM, has achieved the state-of-the-art performance in image classification tasks [Foret
et al., 2020]. As a final remark, despite its remarkable empirical success, the machine learning
community has not reached a theoretical understanding of sharpness. We refer the interested read-
ers to some of the theoretical attempts to mathematically formalize the effectiveness of sharpness
[Neyshabur et al., 2017, Kleinberg et al., 2018, He et al., 2019].

Sharpness Minimization Despite its theoretical strength, it is computationally nontrivial to mini-
mize sharpness because of its high computational cost. Therefore, all existing approaches minimize
sharpness indirectly by minimizing an approximate value [Chaudhari et al., 2019, Sun et al., 2020].
Similarly, SAM uses the following update rule to approximately minimize sharpness.

w = w − η

(
∇wL̂(w) + ∇w′L̂ (w′)

∣∣∣
w′=w+ ρ

∥∇L(w)∥ L̂(w)

)
(η > 0 : learning rate ) (3)

This update consists only of first order derivative, which is computationally feasible A more theoret-
ical explanation of how this update rule minimizes sharpness can be found in the Appendix A.

4 Experiments

To investigate the applicability of SAM to the MD problem, we have trained several GNN models
(CGCNN [Xie and Grossman, 2018], SchNet [Schütt et al., 2017], MEGNet [Chen et al., 2019])
recently developed for materials applications using MatDeepLearn framework [Fung et al., 2021].
Model training is done with the 300 K dataset, and their generalizability is tested with the higher-
temperature dataset at 900 K. We examine the effect of SAM with several values of the hyperpa-
rameter ρ in the loss function. As a baseline optimizer, we train each model with stochastic gradi-
ent decent (SGD) with decoupled weight decay (AdamW) [Loshchilov and Hutter, 2017] for 1000
epochs. Hyperparameters optimization is obtained using Ray Tune library. We have used NVIDIA
GPU (V100) cluster nodes to perform model training, hyperparmaeter optimization, and test error
evaluation.

Table 1: Out-of-sample errors baseline (without SAM) and with SAM (eV/atom)

SiC a-SiO2

baseline with SAM weight (ρ) baseline with SAM weight (ρ)
CGCNN 1.957 0.008 0.01 0.065 0.204 0.01
SchNet 0.025 0.024 0.02 0.071 0.011 0.02

MEGNet 19.17 0.447 0.05 0.055 0.169 0.01

We observe improved out-of-sample error for all models with the crystalline SiC dataset, ranging
from 5 to 99.6% reduction compared to the baseline. Many of optimal test values were obtained
with SAM weight ρ around 0.02, which is consistent with the value reported by Foret et al. [2020].
Unlike the SiC case, SAM does not consistently improve test performance for a-SiO2 dataset. Glass
landscape is known to be rough and consists of intrinsically sharp minima [Kushima et al., 2009]. It
is remarkable to see that flat minima do not have high performance for some material data while they
constantly show high performance on images [Jiang et al., 2019]. Provided that material science has
the accumulation of knowledge of material properties, it is an interesting research question to reveal
the relation between the property of energy landscape and loss landscape.
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5 Conlusion

We have studied the effect of a novel SAM technique in materials dataset using SOTA GNN mod-
els. Two systems, SiC and a-SiO2, have been examined, considering their distinct characteristics
of chemical-bond network and associated potential energy landscape. The GNN models were opti-
mized and trained using an ambient condition dataset. The effect of SAM in model generalizability
was tested using a high-temperature dataset characterized by enhanced thermal noise. Our study sug-
gests a promising avenue to realize materials models with enhanced generalizability and an insight
into the future SAM algorithmic design taking advantage of the energy landscape of materials.

Broader Impact

SAM is a lightweight, model- and system-agnostic approach to improve the generalization per-
formance in the physical sciences. Of those, SAM will be particularly beneficial for large-scale
NNQMD simulation to study far-from-equilibrium material processes, where a carefully handcrafted
model suffers from the fidelity-scaling problem. Our result encourages further applications of SAM
to materials dataset, at the same time, suggests a possible route to future SAM algorithmic design.
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A SAM minimizes sharpness

As an essential summary of [Foret et al., 2020], we briefly describe how Eq. 3 amounts to ends up
minimizing sharpness. Consider the differentiation of sharpness Eq. 2, i.e,

∇ max
∥ϵ∥2≤ρ

L̂(w + ϵ),

or equivalently the following form,

∇L̂(w + ϵ∗) with ϵ∗ = argmax
∥ϵ∥2≤ρ

(
L̂(w + ϵ)

)
By the first-order Taylor approximation, L̂(x,w+ ϵ) can be approximated to L̂(w)+ ϵT∇L̂(w) and
ϵ∗ is reduced to the solution of the linear minimization problem.

ϵ∗ = arg max
∥ϵ∥≤ρ

L̂(w + ϵ) ≈ argmax
∥ϵ∥≤ρ

(
L̂(w) + ϵT∇L̂(w)

)
= argmax

∥ϵ∥≤ρ

(
ϵT∇L̂(w)

)
Thus, the approximated ϵ∗ can be obtained as follows.

ϵ∗ ≈ ρ
L̂(w)

∥∇L̂(w)∥

With the approximated ϵ∗ and omitting the second order derivative of as below,

∇L̂(w + ϵ∗) = ∇w(w + ϵ∗)∇w′L̂ (w′) |w′=w+ϵ∗

≈ ∇w′L̂(w′)|w′=w+ ρ

∥∇L̂(w)∥
L̂(w)

Eq. 3 is obtained, which essentially reduces sharpness (Eq. 2) on each step in approximation.
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