Deep-DFT: A Physics-ML Hybrid Approach
to Predict Molecular Energy using Transformer
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Abstract

Computing the energy of molecules plays a critical role for molecule design.
Classical ab-initio methods using Density Functional Theory (DFT) often suffers
from scalability issues due to its extreme computing cost. A growing number
of data-driven neural-net-based DFT surrogate models have been proposed to
address this challenge. After trained on the ab-initio reference data, these models
significantly accelerate the energy prediction of molecular systems, circumventing
numerically solving the Schrodinger equation. However, the performance of these
models is often limited to the scope within the training data distribution. It is
also challenging to discover physical insights from their prediction due to the
lack of interpretability of neural networks. In this paper, we aim to design a
physics-ML hybrid DFT surrogate model, which is physically interpretable as well
as generalizable to beyond the training data distribution. To achieve these goals,
we propose a physics-driven approach to fit the energy to an equation combining
Coulomb and Lennard-Jones potentials by first predicting their sub-parameters,
then computing the energy product by the equation. Our experimental results show
the effectiveness of the proposed approach in its performance, generalizability, and
interpretability.

1 Introduction

In computational chemistry, a common method to discover and design molecular structures is
minimizing the energy between atoms in a given molecular system. Starting from the experimental
geometry of the molecule, we calculate the total energy of the molecule by slightly perturbing the
coordinates of each atom. The total energy is computed by ab-initio electronic structure calculation
using Density Functional Theory (DFT) [9]], numerically solving an approximated Schrédinger
equation. As this process is computationally expensive, DFT is applied to a limited scale, typically
up to 10* atoms. One of the grand challenges in computational physics is to design a model that can
accelerate the energy calculation of DFT without loss of accuracy.

*Indicates equal contribution.
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Figure 1: Overview of architecture: Deep-DFT

Recently, neural network models [4! 5] are proposed to learn the molecular representation and to
predict the energetic properties of DFT calculation. ANI [13] and TensorMol [17]], which are referred
to as Behler-Parrinello networks [13]], use deep neural networks (DNNs) to learn chemical represen-
tation and to predict energies based on hand-crafted atomic descriptors. DTNN [10], SchNet [[11]],
HIP-NN [7]], and PhysNet [14] learn chemical representations from nuclear charges and Cartesian
coordinates of atoms by message-passing, where a DNN exchanges information between individual
atoms by messages learned from the data. After trained on ab-initio reference data, these models sig-
nificantly accelerate the energy prediction of molecular systems, circumventing numerically solving
Schrodinger equation. Thanks to their computational efficiency and scalability, these DNN-based
energy prediction models increasingly play an important role in molecular design and discovery.

However, there are two main challenges in the existing DFT surrogate models. Firstly, they tend to
perform well only within the distribution of the training data. Slight perturbation of the molecular
structure often makes the geometry far from the training data distribution, leading to poor energy
prediction. Secondly, it is challenging to discover physical insights from the prediction due to the
lack of interpretability of DNNs.

To tackle these challenges, we propose Deep-DFT to predict DFT energy of a molecule enabling
physical interpretation as well as generalization beyond the training data distribution. To achieve
these goals, instead of directly estimating molecule energy, we adopt a physics-ML hybrid scheme:
fitting to a function that describes the energy of the chemical system combining Coulomb potential
and Lennard-Jones potential. In this way, the energy of a molecule is assumed to be a function of
inter-atomic distances and sub-parameters of the energy function (Sec.[2.2). Most of the existing
neural-net potentials have focused on explaining short-range interactions while ignoring charge
effects rather than considering long-range interactions taking into account atomic charge effects.
Thus, there are obvious limitations to account for charge effects or long-range interactions from
reactions. Recently, a method of indirectly predicting the electronegativity of an atom and calculating
the atomic charge based on a neural network has been introduced. To estimate atomic and inter-atomic
parameters, we adopt Transformers [15]], learning a wide range of contextualized representations for
a set of tokens (in our case, the tokens are a set of atom features such as coordinate values or types of
atoms). To the best of our knowledge, our model is the first attempt to adopt Transformers to directly
acquire a charge [6].

We summarize our contributions as three folds:

* Generalizablity: Since we fit the energy with a fixed formation of a function, the predicted
energy is unlikely to be far off from the overall physical trend defined in the equation. Therefore,
even for an unseen structure beyond the training distribution, the proposed model estimates the
energy within a physically feasible range.

* Interpretablity: As we obtain a complete mathematical function describing the potential
energy of the chemical system unlike existing black-box models, our model conveys fully
interpretable results, potentially expected to discover physical insights for scientific research.

» Expandability: Our model can utilize model parameters learned from a system with fewer
atoms, even when new atoms are added. Therefore, it naturally enables curriculum learning by
starting with a small number of atom types and gradually increasing the types of atoms.



2 Proposed Model

As illustrated in Figure[T} the proposed model involves two main components: 1) the Transformer
Molecular Encoder (fy), which predicts the atomic and inter-atomic parameters from a sequence of
atomic descriptors of the target molecule (Sec. [2.T), and 2) the Parameterized Energy Function (h),
which computes the energy product from the predicted atomic and inter-atomic parameters (Sec. [2.2).
As the energy function is continuous and differentiable, we train fy in an end-to-end fashion based
on the loss derived from the predicted energy, sub-parameters of the energy function, and the overall
distribution of the dataset.

2.1 Transformer Molecular Encoder

Transformers [15] effectively capture interactions among the elements of a sequence with self-
attention. Following recent works [[12} 8] that applied Transformers to learn the molecular representa-
tions from handcrafted descriptors, we adopt Transformers as the basis of our model.

Atomic Descriptors. Based on chemical properties and coordinates within the molecule, each atom
1 is encoded b){ atomic c'lescriptqrs a; = {CZ-, {ij}0§j<n7(,€{_¥’p7d”_}}, where C; = {zi,8:} is
the set of chemical descriptors with atomic number z; and atomic self-energy s;, D7} is the set of
inter-atomic pseudo-electron density associated with atom <.

Transformer. Transformer encoder [13]] fy in Figure|[I]is composed of / blocks of alternating layers
of multi-head self-attention and MLP, with layer-norm [[1]] in-between and residual connections after
every block [16] 2]]. As the order in the input sequence does not matter for computing the energy,
the positional embedding is removed. Instead, relative positions between atoms are considered in
this problem by modifying the self-attention module in the Transformer as follows. The relevance
between a query @; € R? and a key K j € R? is weighted by pseudo-electron density D;; between
them to reflect orbital information of each atom. For the query, key, value Q, K,V € R"*¢ with n
atoms, the self-attention layer learns the atom representations by the attention operation
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where d is dimension of the key and ® indicates element-wise matrix multiplication.

Attn(Q, K, V, D) = softmax < (D)

Specifically, we encode inter-atomic distance with the estimated electron density from the radial
distribution function (RDF) g, of orbital 0. As RDFs describe how the electron density varies with
the distance from each atom, we pass the radial distance of each atom instead of absolute coordinates.
This better represents the local atomic environment, invariant under SE(3) transformation, including
rotation and translation. We set the number of heads 7 = |o| with the number of orbitals (RDFs).

Atomic and Inter-atomic parameter. In the proposed model, the Transformer encoder takes a
sequence of atomic descriptors (i.e., [ag, a1, ..., a,—1]) as its input, then encodes a molecule as a
joint representation of atomic and inter-atomic features. It outputs a sequence {X; } with transformed
embeddings from {a;}. The atomic feature «; of the i-th atom and the inter-atomic features ﬁ}]‘l
between ¢-th atom and its neighbor atom j are obtained by

a; = ReLU(FC(X,)), 2)
"o (Xf’”) : X§’">) +ELU <X§m> : X](m)) T, 3)

where ¢ and ELU are sigmoid and exponential linear unit, respectively. Note that X Z-(m) indicates the

m-th head of the i-th embedding (our model uses four heads as four inter-atomic features are used).
2.2 Parameterized Energy Function

Using the predicted atomic parameters «; and inter-atomic parameters ijl :4), we compute the total

energy using the following potential function E= h(a, B 1) s):
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i=1 Self energy
Coulomb potential Lennard-Jones like potential



Here, data from different molecules are used all together for training. As the energy variation among
different 3D structures is different molecule by molecule, the energy tends to be predicted as the
mean energy of all variants of the target molecule if its energy variation is relatively small. To tackle
this, we apply two loss terms:

e 1) Lcemse (Calibrated MSE): Variants of each molecule are grouped as a set, and we individ-
ually predict energy for the structures in the set. For the prediction E' = {EY, .., E}.} and its
corresponding ground truth E = {E}, .., E}; } for k variants, we take the minimum of prediction
and ground-truth, and subtract as offset in MSE loss. By doing this, the model better learns the
relative variation of energy between different structures in the same molecule.

* 2) Lcos (Cosine similarity): the cosine similarity between E’ and E is regularized to be close
to 1, making the distribution of ground-truth and that of prediction be similar.

In addition, we add Rule-based penalty loss £, to induce physics-driven constraints, such as
preventing inter-atomic distance from being too small, constraining the charge value o lower than 5,
regularizing the distribution of 3(®) centered around 6, and constraining the sum of all charges to be
0. The overall loss £ of Deep-DFT is given by

~

L= Lecuse + Lcos + Ly = |(E — Epin) — (E — Emin)o+ (1 —E-E')+ L. )

After trained on ab-initio DFT data for the reference molecule, the learned sub-parameters in the
energy function represent quantum-mechanical inter-atomic interactions in the system, conveying
meaningful physical insights.

3 Experiments

We perform experiments to answer the following two questions: 1) Can our model be generalized
beyond the training distribution of the molecular conformation? 2) Can we explain physics of the
molecular system from the obtained energy function?

Experimental Settings. We use ANI-1 dataset [13which consists of more than 20M off equilibrium
conformations for 57,462 small organic molecules with C, H, O, N atoms. For effective training, we
adopt curriculum learning strategy; we first pre-train our model with four smallest molecules, where
each containing only the following elements ({C,H}, {C, H, O}, and {C, H, O,N}), followed by
training on the full dataset. In the second phase, we iterate training between ‘optimal-batch’ (taking
equilibrium structures only) and ‘full-batch’ (with both equilibrium and off-equilibrium structures).
Figure [2] shows the training curve of the pre-training phase (a) and the second phase (b). After
full-training, our model achieves 150 meV of training MSE and 200 meV of test MSE.

Generalizability. To see if our model is gener-
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Figure 2: (a) pre-training curve with 4 smallest

As the training data covers within 4 A off from the molecules (b) training curve with full dataset.

equilibrium position, we compare performance of

our model against ANI-1 model [[13]] beyond this scope, illustrated in Figure |3] (b,d) and (c,e),
respectively. ANI-1 model fails to predict energy outside of the training range. With 5 A or farther
from the optimal structure, ANI-1 outputs unreasonable total energies that are even lower than that
with the optimal structure. On the other hand, our model always predicts physically feasible energy,
showing increasing pattern as it gets farther from the equilibrium. This result illustrates that our
model is better generalized beyond the training distribution.

Interpretability. The final equation obtained from our model contains complete information de-
scribing soft repulsive and attractive interactions between each atom in the target molecular system.
Specifically, the complicated inter-atomic dynamics and interplay between Coulomb force and

https://github.com/isayev/ANI1_dataset
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Figure 3: (a) 3D geometry of equilibrium CH4 molecule. A picked Carbon atom to move is denoted
with the dotted circle. {(b),(d)} Energy prediction (in meV) from our model with movement of the
picked Carbon atom, along the red dotted lines in (b) from an equilibrium on z = 0 and y = 0.
{(c),(e)} Energy prediction by ANI-1 [[13] with the same movement, along the red dotted lines in (c).

Lenard-Jones force can be easily understood by plotting the energy vs. inter-atomic distance. Physi-
cal parameters critical to understand the target system can also be easily obtained from the equation
itself. For example, the inter-atomic bond distances in the equilibrium state can be analytically
computed with r;; value at the minimum energy. Coulomb’s constant 62(]1 ) (C-H: ~ —4.1 x 10% meV
-A-e72,H-H: 0.0 meV - A- e~ 2), charge values «a;, o (C: 0.14, H: -0.03), and dispersion energy
5P
i
The stable methane is a representative non-polar system, so it shows that the distance of the H-H
bond does not need to be counted the Coulomb interaction. It also shows that only a minimal charge
is assigned to capture some Coulomb interaction when the C-H bond is away from the ground state.
The extracted numbers are used to verify the validity of our model from physically interpretable
results.

(C-H: ~ 0.15 meV, H-H ~ 0.47 meV) can be extracted from the equation itself.

Expandability. Our model is scalable to the number of atom types regardless of whether it is a
binary element or a ternary element or even more, at the design time. Specifically, it can be achieved
by replacing the number of electrons in each atom with a one-hot vector in the input sequence to
the Transformer. This one-hot vector encoding potentially enables our model to learn new types of
atoms flexibly. For example, after learning a molecule composed only of C and H, it is possible to
start training with the same model parameter for molecules with C, H, N or with C, H, O, N. This
not only enables curriculum learning but is also advantageous when applied to complex atom-type
composition systems. Our model has advantages over many other descriptor-based neural network
potential models that reveal difficulty in utilizing pre-trained information when the composition of
elements changes.

4 Summary and Impact

We propose a novel DFT emulator beyond physically naive machine learning models by applying
physical regularization. It is also the first attempt which the ML model directly predicts the atomic
charge. In the context of this work, physical regularization is the process of applying knowledge in
Physics into an otherwise physically naive neural-network models. By regularizing the model to fit
into a physical equation, the model performs better on unseen test sets beyond the scope of training
distribution. The proposed model is fully generalizable which can predict energy outside of the
training regime, and interpretable which can provide human understandable mathematical equations.
Therefore, our model can be used as a novel tool providing physical insights for scientific discovery.
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