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Abstract

Wide-field astronomical surveys are often affected by the presence of undesirable
reflections (often known as “ghosting artifacts” or “ghosts”) and scattered-light
artifacts. The identification and mitigation of these artifacts is important for
rigorous astronomical analyses of faint and low-surface-brightness systems. In this
work, we use images from the Dark Energy Survey (DES) to train, validate, and test
a deep neural network (Mask R-CNN) to detect and localize ghosts and scattered-
light artifacts. We find that the ability of the Mask R-CNN model to identify
affected regions is superior to that of conventional algorithms that model the
physical processes that lead to such artifacts, thus providing a powerful technique
for the automated detection of ghosting and scattered-light artifacts in current and

near-future surveys.
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1 Introduction

Wide-field imaging surveys at optical and near-infrared wavelengths, that map large parts of the
sky, have provided a wealth of astronomical information that has enabled a better understanding of
the processes that govern the growth and evolution of the Universe and its contents. Near-future
surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST; [12]),
will further expand our knowledge of the Universe by extending measurements to unprecedentedly
faint astronomical systems. Such surveys will produce terabytes of data each night and measure tens
of billions of stars and galaxies.

Images collected by galaxy surveys often contain artifacts caused by scattered and reflected light
(commonly known as “ghosting artifacts” or “ghosts”) from bright astronomical sources. The effective
mitigation of these artifacts, and the spurious brightness variations they introduce, is important for
the detection and precise measurement of faint astronomical systems, a major goal of current and
upcoming surveys [3,9,14,17]. Modern telescopes introduce light baffles and anti-reflective coatings
on key optical surfaces, that greatly reduce the occurrence of ghosts and scattered-light events.

However, a complete elimination of those artifacts is often impossible. Furthermore, given the
large datasets produced by astronomical surveys, rejection by visual inspection is not feasible and
automated methods should be developed. The Dark Energy Survey (DES; [6,7]), for example, uses a
Ray-Tracing algorithm [16] that models the physical processes that lead to ghosting and scattered-
light artifacts (configuration of the telescope, positions of known bright stars, etc.) to predict the
presence and location of artifacts.

In this work we use an object detection and segmentation algorithm, namely Mask Region-Based Con-
volutional Neural Network (Mask R-CNN; [12]) to predict the location of ghosts and scattered-light
artifacts in DES images. We use a set of manually annotated images and masks for training, validation,
and testing. We show that this method performs better in locating affected areas in astronomical
images compared to conventional methods, like the Ray-Tracing algorithm mentioned above. Our
code and data are available at: https://github.com/dtanoglidis/DeepGhostBusters
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Figure 1: Examples of full-focal-plane DECam images containing ghosts and scattered-light artifacts,
and the corresponding ground-truth masks created through manual annotation. In panel (a) we have
artifacts of type ‘Rays’ (in red), while in panel (b) we have artifacts of type ‘Bright’ (in blue) and
‘Faint’ (in yellow).

In this work we use images that come from the full six years of DES observations, obtained with the
570-megapixel Dark Energy Camera (DECam; [9]), mounted on the 4m Blanco Telescope in Chile.
The DES data cover ~ 5000 deg? of the southern sky in five photometric filters, grizY’, to a depth of
1 ~ 24 mag [1].



Specifically, we use 2000 images that cover the full DECam focal plane and are known to contain
ghosts and scattered-light artifacts. These are part of the dataset used in Chang et al. [5] to train
a standard CNN classifier to distinguish between images with and without ghosts, and is publicly
available at https://des.ncsa.illinois.edu/releases/other/paper-data. We refer the
interested reader to that paper for details on the data preprocessing. The focal plane of DECam
consists of 62 charge-coupled devices (CCDs), as can be seen on Figure[I] During training each
sample is the full focal plane image and not individual CCDs; however, as we discuss in §[Z_f], we
evaluate the performance of our model on a per-CCD basis, i.e. how well Mask R-CNN is able to
flag the affected CCDs.

Training the Mask R-CNN algorithm requires both images and ground-truth segmentation masks
identifying objects of interest in each image. To create these masks, we used the VGG Image Annota-
tor (VIA; https://www.robots.ox.ac.uk/ vgg/software/via/), a simple manual annotation software for
images, audio and video. During manual annotation, we categorized the artifacts into three distinct
morphological categories: ‘Rays’ (scattered-light artifacts originating from the light of off-axis stars
scattering off of the DECam filter changer), ‘Bright’ (high-surface-brightness and relatively compact
ghosts that come from multiple reflections off the DECam focal plane and the telescope lenses) and
‘Faint’ (lower-surface-brightness and more diffuse ghosting artifacts, that also originate from multiple
reflections between the focal plane and the telescope lenses or filters, or internal reflections off of the
faces of the lenses). We note, however, that the distinction between bright and faint ghosts is quite
arbitrary, and does not come with a specific surface-brightness threshold.

In Figure[T| we present examples of DECam focal-plane images and ground-truth masks of artifacts:
in panel (a) we can see examples of ‘Rays’ (in red the mask), while in panel (b) examples of ‘Bright’
(in blue) and ‘Faint’ (in yellow) artifacts.

3 Method

We train Mask R-CNN [12], a state-of-the art instance segmentation (a combination of object detection
and image segmentation) algorithm, to detect and mask ghost and scattered-light artifacts. Previous
applications of Mask R-CNN in astronomy have focused on deblending and classifying galaxies from
imaging data [4,9]. In the first stage of the model, the input images are fed into a pre-trained deep
CNN, also known as the backbone network, with its fully connected layers removed. This produces a
feature map that is passed into the Region Proposal Network (RPN), to produce a limited number of
candidate Regions of Interest (Rols). However, each of the proposed Rols can have a different size,
and the RolAlign method is used to perform a bilinear interpolation on the feature maps, to produce
fixed-size feature maps of the candidate regions that pass to main part of the algorithm.

The main part of Mask R-CNN performs three tasks in parallel. A softmax classifier learns to
predict the class of the object within the Rol (L loss). A regressor learns the best bounding
box coordinates (Lppox 10ss). Finally, a Fully Convolutional Network (FCN) performs semantic
segmentation (L, 10ss), i.e. a per-pixel classification, that creates the masks. The total loss is thus
Ltot = Lcls + Lbbox + Lmask-

We use the Mask R-CNN implementation by Abullah [2], that is written in Python using the high-
level Keras library on a TensorFlow backend. We use the default 101-layer deep residual network
(ResNet-101; [13]) as the backbone CNN architecture.

Before training, we randomly split the full dataset of 2000 images (and the corresponding ground-
truth masks) described in into a training set (1400 images), a validation set (300 images), and a
test set (300 images). We initialize the learning procedure with the weights learned on the Microsoft
Common Objects in Context (MS COCO) dataset [17], which consists of ~ 330k images of 91
classes of everyday objects.

The training is performed in different stages with progressively smaller learning rates (one order
of magnitude less each time), from n = 4 x 1073 for the first 15 epochs, downton = 4 x 1076
(20 epochs in each stage), for a total of 75 epochs. This allows for deeper training with less risk
of overfitting. We utilized the 25 GB high-RAM Nvidia P100 GPUs available through the Google
Colaboratory (Pro version). The training took ~ 4 hours to complete. The inference time is ~ 0.34s
per image to predict.


https://des.ncsa.illinois.edu/releases/other/paper-data

4 Results
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Figure 2: CCD-based (a) precision, (b) recall, and (c) F'1 score of the Mask R-CNN model (blue
lines) and the Ray-Tracing algorithm (orange lines). We consider both the combination of all types of
artifacts (solid lines) and the combination of ‘Rays’+‘Bright’ (dashed lines). The CCD area threshold
is defined as the fraction of the CCD area that must be covered for it to be classified as affected.

The conventional Ray-Tracing algorithm used by DES flags affected focal plane images on a CCD-
by-CCD basis — i.e., if a CCD contains a ghost or scattered-light artifact, the entire CCD is removed
from processing. To compare the performance of the Mask R-CNN to the conventional algorithm, we
use metrics that are based on whether a CCD contains a ghost or scattered-light artifact. Specifically,
we consider each image as a 1D array of length 62 with entries 0 and 1, where 0 corresponds to
CCDs that do not contain an artifact, and 1 corresponds to those that do contain one. Then, we define
the CCD-based precision, recall, and F'1 score (harmonic mean of the previous two) based on the
number of CCDs in a batch of images (for example, in the test set presented here) that were correctly
classified as containing an artifact.

These metrics depend on whether a CCD contains an artifact or not. In most cases, the mask of an
artifact only partially covers a CCD. Thus, we define a threshold for the fraction of the CCD area
that must be covered for the CCD to be classified as affected. In Figure 2| we present the CCD-based
(a) precision, (b) recall, and (c) F'1 score of the Mask R-CNN and Ray-Tracing algorithms, as a
function of that area threshold (the CCDs masked as "bad" by the Ray-Tracing were obtained from
https://des-ops.fnal.gov:8082/exclude/).

We consider two cases: when all types of artifacts are combined (solid lines) and when only the
combination ‘Rays’+‘Bright’ is considered (dashed lines). We do that for a fair comparison, since
Ray-Tracing is not optimized to detect very faint ghosts. In Table[T] we present the values of these
metrics for the two models, at a 0% area threshold (single pixel of an artifact within a CCD needs to
be present, for the CCD to be counted as “bad"), which is the most conservative approach for "bad"
CCD rejection.


https://des-ops.fnal.gov:8082/exclude/

Table 1: CCD-based evaluation metrics (precision, recall, F'1 score) for the Mask R-CNN and
Ray-Tracing algorithms, at 0% CCD area threshold.

Mask R-CNN Ray-Tracing
Rays+Bright Rays+Bright+Faint Rays+Bright Rays+Bright+Faint
Precision 84.3% 68.7% 64.7% 89.9%
Recall 63.6% 82.5% 48.4% 23.5%
F1 score 72.5 % 75.0% 55.4% 37.3%

As indicated by the F'1 score plot in Figure[2] which is a combination of the precision and recall, Mask
R-CNN performs better for both artifact type combinations and across all area threshold levels. From
the Table[I| values (at the single pixel area threshold), we see that for the combination ‘Rays+Bright’
R-CNN performs significantly better than the Ray-Tracing algorithm as indicated by all three metrics.
For the combination ‘Rays+Bright+Faint’ Ray-Tracing achieves higher precision, but significantly
lower recall compared to the Mask R-CNN model; recall can be seen as more important metric if the
target is to detect the highest possible number of affected CCDs — in other words to minimize the
remaining artifacts in the data.

As we can see on Figure 2] recall tends to decrease with the area threshold for the Mask R-CNN
model.This is mainly driven by the ‘Bright’ ghosts that are relatively small, only partially covering
the CCDs that contain them. As we increase the area threshold, only a few such ghosts can pass
it. Generally, precision decreases, while recall increases as a function of the CCD area threshold
for both artifact combinations. As we increase the threshold, fewer CCDs are labeled as containing
artifacts and thus the purity decreases while the completeness increases.

For practical applications of the Mask R-CNN model for astronomical images analyses, the applied
threshold can be set based on whether we favor a higher purity (precision) or completeness (recall),
which in turn depends on the specific science case.

5 Conclusion

In this work, we applied a state-of-the art object detection and segmentation algorithm, Mask R-CNN,
to the problem of finding and masking ghosts and scattered-light artifacts in astronomical images
from DECam. The effective detection and mitigation of these artifacts is especially important for
low-surface-brightness science, an important target of future surveys.

We compare the ability of Mask R-CNN in masking affected CCDs in ghost-containing images with
that of the Ray-Tracing algorithm. We find that the Mask R-CNN model has superior performance, as
measured by the F'1 score. These results hold across different CCD area thresholds and for the two
combinations of the morphological classes discussed in this work — ‘Bright’+‘Rays’ and ‘Bright’+
‘Rays’+‘Faint’.

The results presented here highlight the promise of object detection and segmentation methods in
tackling the identification of ghosts and scattered-light artifacts. Such automated techniques can
facilitate the efficient separation of artifacts from scientifically useful data in upcoming surveys like
the LSST.

Broader Impact

In this work we used a popular object detection/image segmentation algorithm in an astrophysical
context. Object detection algorithms are known to have significant societal impact, especially when
they are applied to humans (face recognition). The application of such algorithms to the physical
sciences is limited so far. By using them in science and better understanding cases where they fail
(produce false positives/negatives) we can alleviate some of the biases that are inherent to the training
of these algorithms.
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