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Abstract

Computer-aided retrosynthesis accelerate and innovate the process of molecule
and material design, allowing the discovery of new pathways and automating part
of the overall development process for drugs and materials. Current machine-
learning methods applied to retrosynthesis are limited by their lack of control when
generating single-step reactions as they rely on sampling or beam search algorithm.
In this work, we apply vector quantized representation learning [1] to learn reaction
classes along with retrosynthetic predictions. We represent each reaction class
with a vector allowing us to condition the retrosynthetic prediction. We show
that learning reaction classes increases control as well as generating more diverse
predictions than a baseline model. Our results are a significant step forward in the
development of multistep retrosynthesis prediction.

1 Introduction

With the emergence of automated labs and material acceleration platforms, there is a need for a
reliable automated synthesis planning algorithm to further speed up new material discovery. First
formalized by Corey [2], retrosynthesis is a way to approach synthesis backwards and decompose a
target molecule sequentially into simpler compounds. This approach was adapted in all computational
retrosynthesis methods that use machine learning. Usually, these methods consist of two algorithms:
a single-step model predicting the possible precursors given a target molecule and a search algorithm
that combines the single-step predictions into a full synthesis.

We can distinguish three types of single-step models: template-based methods [3, 4, 5], graph-based
methods [6, 7, 8] and methods based on textual representations of molecules (SMILES) [9, 10].
Template-based methods rely on reaction templates extracted from data. These templates are then
matched against a target molecule and the results are typically ranked by a neural network. This type
of method suffers from an inability to generalize and does not scale well. The majority of graph-based
methods split the problem in two subtasks, first identifying which bond to break and then completing
the partial molecule into reactants. While this approach showed promising performance in most cases,
it does not cover protection strategies that are crucial for complicated multistep retrosynthesis. Finally,
methods using textual representations such as SMILES rely on models developed for neural machine
translation, in particular the Transformer network [11, 12, 9]. This approach has the advantage of
handling the stereochemistry in a robust way compared to graph-based methods. Notably, reaction
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Figure 1: A typical reaction in organic chemistry (a) and the multimodality of retrosynthesis (b)

classes were used in a recent work [10] to succesfully condition the retrosynthesis model to improve
its performance.

This work focuses on the prediction of possible compounds given a target molecule with an emphasis
on its application in the context of a multistep retrosynthesis setup. We propose a learnable model
where we learn reaction classes along with the retrosynthesis prediction, successfully making the
generation process more controllable and thus more reliable. We extend the SMILES based method
to learn vector quantized reaction classes and condition the generation of the reactants using these
classes. We demonstrate that learning this classes improves the diversity of the relevant generated
reactants.

2 Problem Formulation

We can decompose an organic reaction into four pieces of information: reactants, i.e. the molecules to
start the reaction with, products, i.e. the molecules that are obtained after the reaction, reagents which
enable the reaction such as catalysts or solvents, and reaction conditions, i.e. temperature, reaction
time and pressure. An exemple of a reaction is depicted in Figure 1a. Reaction prediction consists of
predicting products given sets of reactants, whereas a computational retrosynthesis corresponds to
predicting the reactants given a product. Typically, reaction prediction only allows for a very limited
number of possible solutions. In contrast, retrosynthesis prediction is a multimodal problem with
many equally valid solutions as demonstrated in Figure 1b.

In this work, we represent all molecules using SMILES. Let X and Y be the sequences of the product
and reactants respectively. Our goal is to predict Y given X.

3 Methods

Our approach consists of augmenting a single step model by learning reaction classes. We hypoth-
esized that learning to cluster the reactions by type along with the retrosynthesis prediction would
enable sampling more diverse retrosynthetic routes. While we used our framework in conjunction
with Transformers, it could be applied equally well to graph-based methods without significant
changes in architecture.

3.1 Model Architecture

Our model consists of four main components: a product encoder, a reaction class encoder, a reaction
class predictor and a reactant decoder. The product encoder and the reaction class predictor are
parametrized as a Transformer Encoder, the reactant decoder as a Transformer Decoder and the
reaction class predictor is a multilayer perceptron. We use the hidden representation corresponding
to the “end-of-string” token as an aggregate representation of the full sequence. The weights of the
product encoder and the reaction class encoder are shared. Figure 2 provides a schematic overview
the pipeline of our model.

The product encoder pe(X) encodes the product sequence into a hidden representation hx. The
reaction class predictor rcp(heos

x ) predicts a distribution over all the classes given the representation
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Figure 2: Overview of our model’s pipeline

corresponding to the "end-of-string" token. The reaction class encoder rce([X,Y]) takes a concate-
nation of the product X and the reactants Y and outputs z a single vector representation of the full
reaction (which is the hidden representation of the eos token of the reactants). Subsequently, this
representation is quantized into zq, similarly to [1]. We used 128 quantized reaction classes for all
our experiments. Finally, the reactant decoder takes hx and zq and defines a distribution over the
possible reactants.

At training time, zq is defined using the reaction class encoder rce, whereas at inference time we use
the most likely reaction class according to the reaction class predictor rcp.

3.2 Learning

The training loss of our model has three terms: a reaction prediction term, formalized by the negative
log likelihood, a vector quantization loss similar to the one defined in the literature [1] and a reaction
negative log likelihood.

L = log pθ(Y |zq,hx)+log pϕ(rcp(pe(X))|rce([X,Y ]))+β||rce([X,Y ])−e||2+||e−rce([X,Y ])||2

To avoid the index collapse, where only a couple of classes are used, we pretrained the model using
only the retrosynthetic loss for a 5 epochs.

4 Experimental Setup

4.1 Dataset

For this work, we used the CJHIF dataset [13]. It consists of 3M organic chemistry reactions. We
used the SMILES as provided in the dataset and discarded all the information about the reagents as
they were provided in various formats. Then, the 3M reactions were filtered according to their yield,
keeping only non zero values. The resulting dataset consists of 1.7M reactions and has been split in
train, validation and test sets in a 90/5/5 ratio.

4.2 Baseline Model

Our baseline model is a Transformer network and we used the fairseq implementation [14] matching
the dimensions of our proposed model. Training of both models was carried out for a similar
number of epochs and we used temperature sampling to generate retrosynthetic predictions. Notably,
temperature sampling was favored over beam search as the former produces more diverse solutions.

4.3 Evaluation Metrics

The main metric used to compare single-step retrosynthetic models in the literature is the full sequence
accuracy on the validation set. However, we argue that this metric is not appropriate for retrosynthesis
prediction as inherently it cannot reflect its multimodal nature. Indeed, a model may predict a
valid solution that the full sequence accuracy would invalidate as it only accepts a single solution.
Furthermore, it may also be prone to overfit to shorter sequences. Hence, we propose the perplexity
of the model to be a better metric.
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For evaluation, we verify the correctness of a retrosynthetic prediction using a forward synthesis
model trained on the same dataset. Similar approaches have already been proposed in previous work
[9] and it has also been studied in nlp [15]. To account for the many possible outcomes of a reaction,
we used a beam search of width 5. A prediction was considered correct when its product can be
correctly backtranslated by the forward model. Importantly, we also verified the uniqueness of each
solution using RDKIT to canonicalize the SMILES.

5 Experiments

The correctness and uniqueness of the predictions sampled from both the baseline and our model
are reproduced in Table 1. For the baseline model, we used temperature sampling and sampled 128
solutions. For our model, we conditioned the generation on each of the 128 reaction classes and
used greedy decoding. As can be seen, our model is better at generating more diverse and correct
solutions.

Table 1: Comparison between the performance of the baseline model (Transformer network) and our
model. T denotes the temperature used to sample. Using quantized classes improves the number of
unique solutions generated.

Model Correct Correct and Unique

Baseline (T=1.0) 64.58 11.97
Baseline (T=1.5) 39.49 13.76
Baseline (T=1.75) 26.11 11.07
Transformer + VQ classes 35.04 22.64

We performed another experiment to understand the reaction classes better. Hence, we used the
reaction class encoder to classify the reactions of the validation set and inspected the outcome. Some
reaction classes seem to correspond to the presence of a particular functional group whereas other
classes are more difficult to interpret. Figure 3 shows some randomly selected examples classified
using the reaction class encoder. While we can see some similarity between the reactions, it is hard to
draw any conclusion regarding the interpretability of learned reaction classes.

6 Conclusion

Overall, this work proposes a framework to improve the generation of retrosynthetic predictions
using vector quantized reaction classes. Importantly, we have shown an improvement in the diversity
of the predictions over a baseline model.
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A Appendix

Figure 3: Reactions grouped by learned reaction classes. Each line correspond to a different reaction
class. Some similitude can be observed within a reaction class.
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