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Abstract

We introduce a method to simulate parametrized quantum circuits, an archi-
tecture behind many practical algorithms on near-term hardware, focusing on
the Quantum Approximate Optimization Algorithm (QAOA). A neural-network
parametrization of the many-qubit wave function is used, reaching 54 qubits at
4 QAOA layers, approximately implementing 324 RZZ gates and 216 RX gates
without requiring large-scale computational resources. our approach can be used
to provide accurate QAOA simulations at previously unexplored parameter values
and to benchmark the next generation of experiments in the Noisy Intermediate-
Scale Quantum (NISQ) era.

1 Introduction

The past decade has seen a fast development of quantum technologies and the achievement of an
unprecedented level of control in quantum hardware [1]], clearing the way for demonstrations of
quantum computing applications for practical uses. However, near-term applications face hardware
limitations (dubbed Noisy Intermediate-Scale Quantum-NISQ computers [2]]) where qubit count and
lack of quantum error correction constrain potential applications. Despite these limitations, hybrid
classical-quantum algorithms [3-6] have been identified as candidates for practical quantum advan-
tage [7H10]]. The Quantum Approximate Optimization Algorithm (QAOA) [3] is a notable example
of variational quantum algorithm with prospects of quantum speedup on NISQ devices. Built to
exploit quantum effects to solve combinatorial optimization problems, it has been extensively the-
oretically [11H16] and experimentally [17] studied on state-of-the-art hardware and proposed as a
hardware benchmark [18H21]]. In this work, we use a (neural network) variational parametrization
[22] of the many-qubit state and extend the method of Ref. [23] to simulate QAOA. This approach
trades the need for expensive exact classical simulation with an approximate and accurate descrip-
tion. We successfully simulate the Max-Cut QAOA circuit on a 3-regular 54-qubit graph [5, 17, [11]
at depth p = 4.
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Figure 1: The QAOA circuit. A schematic representation of the QAOA circuit and our simulation.
The input state is trivially initialized to |+). Next, at each p, the exchange of exactly (U¢) and
approximately (RX (3) = e~ %) applicable gates is labeled (see Sec. . As noted in the main text,
each (exact) application of the Uq gate increases the number of hidden units by | E/| (the number of
edges in the graph). In order to keep that number constant, we "compress" the model (see Sec. [2),
indicated by red dashed lines after each Uy gate. After the final layer, the RBM is parametrized by
fopt> approximating the final QAOA output state |y, 3).

2 Methods

2.1 The Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is a variational quantum algorithm
for approximately solving discrete combinatorial optimization problems. Since its inception [}
12], QAOA has been applied to Maximum Cut (Max-Cut) problems. With competing classical
algorithms [24] offering exact performance bounds for all graphs, an open question remains — can
QAOA offer quantum advantage by increasing the number of free parameters? In this work, we
study a quadratic cost function [25, 26| associated with a Max-Cut problem. If we consider a graph
G = (V, E) with edges F and vertices V, the MaxCut of the graph G is defined by the following
operator: C = 37, ;c pwijZ; Z; where wj; are the edge weights and Z; are Pauli operators. The
classical bitstring B that minimizes (B|C |B) is the graph partition with the maximum cut. QAOA
approximates such a quantum state through a quantum circuit of predefined depth p: |v,3) =
Us(Bp)Uc(Vp) - - - Ug(B1)Uc(71) |+) where |+) is a symmetric superposition of all computational

basis states: |+) = H®N |0>®N for N qubits (see Fig. . The set of 2p real numbers ~; and
B; for ¢ = 1...p define the variational parameters to be optimized over by an external classical
optimizer. The unitary gates defining the parametrized quantum circuit read U (5) = [[,c e~ BXi
and Ug () = e~"C. Optimal variational parameters  and /3 are then found by optimization of the
following quantum expectation value: C'(~v, 3) = (v, 8|C |v, 3).

It is known that, for QAOA cost operators of the general formC = )", Ci(Z1, ..., Zn), the optimal
value asymptotically converges to the minimum value as p — co. With modern simulations and
implementations still being restricted to lower p values, it is unclear how large p has to get in practice
before QAOA becomes comparable with its classical competition. In this work we consider 3-
regular graphs with all weights w;; set to unity at QAOA depths of p = 1,2, 4.

2.2 Classical Variational Simulation

Consider a quantum system of N qubits. The Hilbert space is spanned by the computational basis
{IB) : B € {0,1}V} of classical bit strings B = (By, ..., By). A general state can be expanded
in this basis as [¢)) = Yz ¢(B)|B). The convention Z; |B) = (—1)%i|B) is adopted. We use
a neural-network representation of the many-qubit wavefunction ¢ (B). Specifically, we adopt a
shallow network of the Restricted Boltzmann Ma<2:hine (RBM) type: [27H29,122]
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Figure 2: Benchmarking the cost function for 20 qubits. a: The exact variational QAOA land-
scape at p = 1 of a random 20-qubit instance of a 3-regular graph is presented, calculated using
the analytical cost formula. The restricted cut along the constant-3 line and at optimal ~ is more
closely studied in panel b. b: RBM-based output wavefunctions are contrasted with exact results. A
variational landscape cut is presented at p = 1,2. Optimal QAOA parameters are calculated using
analytical derivatives (p = 1) or finite differences (p = 2) and a gradient-based optimizer. All pa-
rameters except the final v, are fixed at their optimal values. ¢: The fidelity between exact simulator
outputs and RBM outputs for typical smaller graphs.

N N, N
P(B) ~ 1e(B) = exp Z a;B,; H 1+exp | b+ Z W;,Bj . ()
j=1 k=1 j=1

It is parametrized by a set of complex parameters § = {a, b, W} and not explicitly normalized. We
note that the initial V-qubit |+) can be exactly implemented by setting all variational parameters to
0. That choice ensures that the wavefunction ansatz given in Eq.[T]is constant across all computa-
tional basis states, as required. The advantage of using the ansatz given in Eq.[T|as an N-qubit state
is that a subset of one- and two-qubit gates can be exactly implemented as mappings between dif-
ferent sets of variational parameters 6 — #’. In general, such mapping corresponding to an abstract
gate G is found as the solution of the following nonlinear equation: (B|yg/) = C (B| G |)g) (for all
bitstrings 3 and any constant C), if a solution exists). For example, consider the Pauli Z gate acting
on qubit i. In that case, we have e%Bi = C/(—1)BieaBi after trivial simplification. The solution is
a; = a; + 47 for C = 1, with all other parameters remaining unchanged.

In addition, one can exactly implement a subset of two-qubit gates by introducing an additional
hidden unit coupled only to the two qubits in question. Labeling the new unit by ¢, we can implement
the RZ Z gate relevant for QAOA. The gate is given as RZZ(¢) = e~ 9%i%i o diag(1,e'?, e, 1)
up to a global phase. Defining A(¢) = Arccosh (e’?), the replacement rules read:

Wic - _2A(¢) ) ch = 2A(¢) 9 a; — Q4 + A(¢) ) aj — aj - A(¢) ) (2)

Not all gates can be treated exactly in this fashion. Most notably, gates that form superpositions
belong in this category, including Up(8) = [], e~ X required for running QAOA. This happens
simply because a linear combination of two or more RBMs cannot be exactly represented by a single
new RBM through a simple variational parameter change. To simulate those gates, we employ
a variational stochastic optimization scheme. We take D(¢,v) = 1 — F(¢,%) as a measure of
distance between two arbitrary quantum states |¢) and [¢)), where F(¢, ) is the usual quantum

fidelity: F'(¢, ) = % In order to find variational parameters 6 which approximate a target

state |¢) well (|tbg) = |¢), up to a normalization constant), we minimize D(1)y, ¢) using Stochastic
Reconfiguration (SR) [30H32].

For larger p, extra hidden units introduced when applying Uc(+y) at each layer can result in a large
number of associated parameters to optimize over that are not strictly required for accurate output
state approximations. So to keep the parameter count in check, we insert a model compression step
which halves the number of hidden units immediately after applying Uc doubles it. Specifically
we create an RBM with fewer hidden units and fit it to the output distribution of the larger RBM
(output of U¢). Exact circuit placement of compression steps are shown on Fig. [T} As a result of



the compression step, we are able to keep the number of hidden units in our RBM ansatz constant,
explicitly controlling the variational parameter count.

2.3 Optimization

In this work we use the Stochastic Reconfiguration (SR) [30] algorithm to approximately apply
quantum gates to the RBM ansatz. To that end, we write the "infidelity" between our RBM ansatz
and the target state ¢, D(vg, ®) = 1 — F(1g, ¢), in a way that can easily be evaluated using samples

B ~ |tby|* from Markov Chain Monte Carlo (MCMC) techniques: F(¢, 1)) = <¢(B) >w <M>¢.

¥(B) »(B)
In addition, we can also express gradients of F' using the same set of samples at each optimizer step:
2 0*
o\ [\ | (500
- <> <9> (O, — 2| - (3)
90; Vo e \ O/ <i>
Vo o

Then, the optimizer update is performed using 9,(€t+1) = Q,Ef) -ny, Sk_ll g—@ where S is the Quan-
tum Geometric Tensor (QGT) [33] and 7 is the learning rate. The bulk of computational complexity
at each optimization step comes from solving the linear system associated with the update. The ma-
trix form of S can be ill-conditioned because it is only estimated from MCMC samples. We employ
a standard regularization technique from Variational Monte Carlo by just adding a small constant
€ to the diagonal of S. We find that using the QGT with the bare gradients significantly improves
reached fidelities, enabling this RBM-based approach to consistently reach >90%.

3 Results

3.1 Simulation results for 20 qubits

QAOA angles ~, B are required as an input of our RBM-based simulator. At p = 1, we base
our parameter choices on the position of global optimum that can be computed exactly [11]. For
p > 1, we resort to direct numerical evaluation of the cost function as given in Sec. E]from either the
complete state vector of the system (number of qubits permitting) or from importance-sampling the
output state as represented by a RBM. For all p, we find the optimal angles using Adam [34] with
either exact gradients or their finite-difference approximations.

We begin by studying the performance of our approach on a 20-qubit system corresponding to the
Max-Cut problem on a 3-regular graph of order N = 20. In that case, access to exact numerical
wavefunctions is not yet severely restricted by the number of qubits. That makes it a suitable test-
case. In Fig.[2] we present the cost function for several values of QAOA angles, as computed by
the RBM-based simulator. Panel b shows cost functions of one typical random 3-regular graph
instance. We observe that cost landscapes, optimal angles and algorithm performance do not change
appreciably between different random graph instances. We can see that our approach reproduces
variations in the cost landscape associated with different choices of QAOA angles at both p = 1 and
p = 2. Atp = 1, an exact formula [11] is available for comparison of cost function values. We
report that, at optimal angles, the overall final fidelity (overlap squared) is consistently above 94%
for all random graph instances we simulate.

3.2 Simulation results for 54 qubits

Our approach can be readily extended to system sizes that are not easily amenable to exact classical
simulation. To show this, in Fig.[3|we show the case of N = 54 qubits. For the system of N = 54
qubits, we closely reproduce the exact error curve at p = 1. At p = 4, we exactly implement 324
RZZ gates and approximately implement 216 RX gates in total. This circuit size and depth is such
that there is no available experimental or numerically exact result to compare against. The accu-
racy of our approach can nonetheless be quantified using intermediate variational fidelity estimates.
These fidelities are exactly the cost functions (see Sec. [2) we optimize, separately for each qubit.
In Fig. [3|b we show the optimal variational fidelities found when approximating the action of RX
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Figure 3: Simulating 54 qubits. a: Randomly generated 3-regular graphs with 54 nodes are con-
sidered at p = 1,2,4. At each p, all angles were fixed except for the final 7,. The dashed line
represents the exact cost at p = 1. Error bars were too small to be visible on the plot. b: An array of
final stochastic estimations of single-qubit fidelities in the course of optimizer progress on 54 qubits
at p = 2 where exact state vectors are intractable for direct comparison. Optimal 5 value (for given
51, B2, v1) is shown with a dashed line.

gates. At optimal 4 (minimum of p = 4 curve at Fig.|3|a), the lowest variational fidelity reached
was above 98%, for a typical random graph instance shown at Fig. [3]

We remark that the stochastic optimization performance is sensitive to choices of QAOA angles
away from optimum (see Fig. [3|b). The fidelity between the RBM state (Eq. [1) and the exact V-
qubit QAOA output state decreases as one departs from the optimal « and 3. For larger values
of QAOA angles, the associated optimization procedure is more difficult to perform, resulting in a
lower fidelity (see the dark patch in Fig.[3|b). We find that optimal angles were always small enough
not to be in the low-performance region. Therefore, this model is less accurate when studying
QAOA states away from the variational optimum. However, even in regions with lowest fidelities,
RBM-based QAOA states are able to approximate cost well, as can be seen in Fig. [2|and Fig.

4 Conclusion

Using a novel approximate variational method, we successfully explore previously unreachable re-
gions in the QAOA parameter space. The method is introduced as complementary to established
numerical methods of classical simulation of quantum circuits because it is constrained by choices
QAOA angles more than qubit counts or circuit depths. Classical variational simulations of quantum
algorithms provide a natural way to both benchmark and understand the limitations of near-future
quantum hardware. On the algorithmic side, our approach can help answer an open question in the
field - whether QAOA can outperform classical optimization algorithms [35H37].

A Limitations

A discussed in the main text, our model is constrained by QAOA parameter choices (see Fig. [3]and
accompanying discussion. An additional assumption is stated in Sec. [T]— we tested our approach
only on 3-regular graphs, following earlier literature. Model performance may depend on graph
structure in an unknown way.

B Computational resources

The code needed to reproduce results in this work is available by clicking on the following URL:
github.com/QubitRBM. Numerical simulations were performed using NumPy [38]] (BSD 3), SciPy
[39] (BSD 3)), Google Cirq [40] (Apache License 2.0). Random graph generation was done with
NetworkX [41}142]] (BSD 3). Plots were generated using Matplotlib [43] (PSF).

The amount compute used is difficult to accurately report because the data wasn’t collected during
the process itself. In total, we estimate that the results presented in this paper used approximately
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50 CPU-hours. These resources were used at a local cluster belonging to the authors’ institution/s.
No GPUs were used.

C Societal impact statement

This research develops a classical simulation technique for an algorithm designed for quantum com-
puters. As such, it has very few and far-removed connections with immediate societal impacts which
are difficult to quantify. Any impact is going to have to be related to the development of quantum
hardware and all dangers it presents itself — especially in areas like cryptography in relation to Shor’s
algorithm.

As quantum hardware nears the limit of what is possible to simulate classically, it will become
important to have reference results from large quantum systems. Our approach (or more general
variational many-qubit wavefunctions) could help steer the way in the search for new algorithms.
As an addition, it could help reduce the carbon footprint of all HPC resources needed to perform
quantum simulations with more traditional methods.

D Paper checklist

D.1 For all authors...

* Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? Yes
The authors believe that the main claims made in the abstract and introduction do accurately
reflect the paper’s contributions and scope.

* Have you read the ethics review guidelines and ensured that your paper conforms to them?
Yes

* Did you discuss any potential negative societal impacts of your work? Yes
Societal impact has been discussed in Sec.

e Did you describe the limitations of your work? Yes
Limitations were described in Sec.[Al

D.2 If you are including theoretical results... N/A

* Did you state the full set of assumptions of all theoretical results? N/A
* Did you include complete proofs of all theoretical results? N/A

D.3 If you ran experiments...

* Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? Yes

The (anonymized) code code repository and has been linked in Sec.
e Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? No

All of the training details could not be included as they relate to some of the finer details
of Monte Carlo sampling and optimization not discussed in the main text for the sake of
meeting the four page limit. However, algorithms used in this work are standard in the field
and our hyperparameter choices do not differ from the literature nor does changing them
affect the results appreciably. Relevant literature is cited where those choices are discussed.

* Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? Yes
Error bars were reported where applicable.

* Did you include the amount of compute and the type of resources used (e.g., type of GPUS,
internal cluster, or cloud provider)? Yes
The amount compute was roughly estimated in Sec.
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