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Abstract

We study the use of normalizing flows to represent the field-level probability
density distribution of random fields in cosmology such as the matter and radiation
distribution. We evaluate the performance of the real NVP flow for sampling of
Gaussian and near-Gaussian random fields, and N-body simulations, and check the
quality of samples with different statistics such as power spectrum and bispectrum
estimators. We explore aspects of these flows that are specific to cosmology, such
as flowing from a physical prior distribution and evaluating the density estimation
results in the analytically tractable correlated Gaussian case.

1 Introduction and brief review of normalizing flows

Normalizing flows are a major recent development in probabilistic machine learning [1]. A flurry of
recent work has shown their usefulness for a wide range of applications, such as image generation
[2, 3], variational inference [4], and likelihood-free inference [5, 6]. In cosmology, normalizing
flows have recently been used to represent the posterior distribution of summary statistics such as the
power spectrum or cosmological parameters [7, 8]. In the present paper we use normalizing flows to
represent the probability density of fields such as the matter distribution directly at field level.

A normalizing flow is a natural way to construct flexible probability distributions by transforming
a simple base distribution (often Gaussian) into a complicated target distribution. This is done by
applying a series of learned diffeomorphisms to the base distribution. Given a base distribution pu(u)

of a random variable u, the target distribution px(x) is given by px(x) = pu(u) |det JT (u)|−1,
where T is the transformation (the “flow"), x = T (u), and JT is its Jacobian. We can construct a
transformation T = TK ◦ · · · ◦ T1 by composing simple transformations Tk, depending on learned
parameters and are parametrized using neural networks. In this way very expressive densities can
be constructed. Assuming z0 = u and zK = x, the transformation at each step k is zk = Tk(zk−1)

and the Jacobian determinant is log |JT (z)| =
∑K

k=1 log |JTk
(zk−1)|. Once the flow is learned, two

basic statistical operations are performed efficiently: density evaluation and sampling.

While not as expressive as GANs or VAEs, it is a priori plausible that normalizing flows could be
particularly strong at representing PDFs of fields in cosmology. Many fields in cosmology, such
as the matter distribution, start as Gaussian fields in the far past. They then become progressively
more non-Gaussian with time due to non-linear interactions. In the same way, a Gaussian field base
distribution of a normalizing flow becomes progressively more non-Gaussian by the applications
of more transformations Tk. Such a normalizing flow is therefore a natural candidate to represent
somewhat (non-)Gaussian PDFs of matter fields at late times.

In this work, we utilize the real-valued non-volume preserving (real NVP) flow [3]. The real NVP
flow is expressive and is fast both for sampling and inference, and has also recently received a lot of
attention for its use to represent PDFs in lattice field theory (see e.g. [9]). The details of our network
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resemble [9], which we have modified for this work under the CC BY license. We use 3 convolutional
layers with kernel size 3 and leaky ReLU activation functions. The number of channels is in this order:
1 (the scalar PDF values), 16 (arbitrary number of feature maps), 16 (arbitrary number of feature
maps), 2 (the output variables s and t). As in [9], we stack K = 16 affine coupling layers, each with
their own CNN to parametrise the affine transformation s and t. We use stride 1 convolutions and
no pooling. To implement periodic boundary conditions we use circular padding. To train the flow,
we minimize the forward Kullback–Leibler (KL) divergence [1], the relative entropy from the target
distribution p∗x(x) to the base distribution px(x). As a function of learned parameters ϕ,

L(ϕ) ≈ − 1

N

N∑
n=1

(
log pu

(
T−1 (xn;ϕ)

)
+ log |det JT−1(xn;ϕ)|

)
+ const., (1)

where T is the flow transformation. We use the Adam optimizer to minimize the loss with respect
to the parameters ϕ, with a learning rate of 0.001. We also normalize the training samples to unit
variance and use a batch size of 128. Our results are reproducible in Jupyter Notebooks available at
github.com/SubmissionForPapers/NormalizingFlowsCosmology.

2 Application to Gaussian fields with density evaluation

We train our real NVP flow on samples from a correlated Gaussian field, with a CMB temperature
power spectrum. Here we flow from an uncorrelated Gaussian prior distribution. We use patches of
642 pixels covering a sky angle side length of 4 degrees. In this first example, we use infinite on
the fly created training samples. Training time was about 40 hours on an RTX 3090 and used about
3.8 GB of GPU memory. Samples from the prior, model, and target (training) distribution are shown
in Fig. 1 (left). By eye, the model samples look like the training data.

Gaussian task Local non-Gaussian task
Prior samples Prior samplesPrior samples Prior samples

Model samples Model samplesModel samples Model samples

Target samples Target samplesTarget samples Target samples

Figure 1: Prior samples (top), flow samples (middle), and training samples (bottom). Left: Gaussian
field samples. Right: Local non-Gaussian field samples with f̃ local

NL = 0.2. The non-Gaussian training
data is generated by drawing Gaussian maps from a CMB power spectrum on a 4 degree sky patch
represented on 642 pixels and making them non-Gaussian with Eq. 2. The network makes the
correlated Gaussian prior samples more non-Gaussian, with extrema becoming more pronounced.

For some of the data analysis applications discussed in the introduction, we need to use the flow
in reverse direction for density evaluation. There are two different tasks we can consider here:
in distribution density evaluation (IID: independent, identical distribution) and out of distribution
(OOD) density evaluation; we focus here on IID density evaluation. We would like to verify that
IID samples, when run backwards through the flow (with uncorrelated Gaussian noise prior), are
assigned a probability that corresponds to their true probability. Here the fact that we start with a
tractable Gaussian distribution allows us to compare the flow probability with the exact analytic
probability. We sample 10,000 new IID samples x from the same distribution as the training data
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Table 1: Local non-Gaussianity measurements

f̃ local
NL training f̃ local

NL flow f̃ equi
NL training f̃ equi

NL flow

0.2± 0.074 0.187± 0.085 0.150± 0.044 0.146± 0.040
0.05± 0.024 0.047± 0.029 0.037± 0.017 0.035± 0.017

and reverse flow them to obtain logP flow(x). For the configuration above, we find that the cross
correlation coefficient between logP flow(x) and logP true(x) is r ≃ 0.993. We plot these quantities
for 200 random example maps in Fig. 2. When we limit training data to 1,000 Gaussian maps, the
cross correlation coefficient dropped to about r ≃ 0.97, while with 10,000 training maps we found
r ≃ 0.98. The flow thus learns density evaluation on IID samples rather well.
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Figure 2: Density evaluation logP (x) result from the flow compared to the true log probability of
the sample (mean shifted to zero), for 200 maps with 642 pixel resolution. The cross-correlation
coefficient is 0.993, estimated from 10,000 maps.

3 Local non-Gaussianity and correlated prior

We consider the simplest non-Gaussian random field in cosmology, the local non-Gaussianity. Local
non-Gaussianity [10] is generated by transforming a correlated Gaussian field ϕG(x) as

ϕNG(x) = ϕG(x) + f̃ local
NL

(
ϕG(x)

2 −
〈
ϕG(x)

2
〉)

(2)

To draw samples from this distribution, we square the Gaussian field and add it to the original field
with some amplitude. This form of non-Gaussianity is generated in cosmology for example by multi-
field inflation [11]. We normalize ϕG to variance 1 so that f̃ local

NL = 1 indicates O(1) non-Gaussianity.
This time we flow from a correlated Gaussian field with the correct power spectrum. This makes the
training much more efficient as the flow has a better starting point. We show samples from the prior,
model, and training distribution in Fig. 1 (right). The samples are indistinguishable by eye from the
training data. We show the power spectrum of the samples, prior, and training data in Fig. 3 (left).
The flow thus learns to induce the right non-Gaussianity while keeping the power spectrum intact.
The correlated prior also improves the training convergence. We measure the non-Gaussianity in
the samples by estimating the amplitude of two non-Gaussian templates, the local and equilateral
non-Gaussianity. In the present case the training data has local non-Gaussianity by definition, however
the equilateral template has some overlap with the local template, and it is useful to measure both in
the model samples whose non-Gaussianity can be non-local. We record mean estimated values and
per sample variance of the estimated non-Gaussianity in Table 1, averaging over 10,000 training and
flow samples. The flow is accurate to about 5% in the mean and 10% in the per sample variance.

4 Non-Gaussian fields from N-body simulations

Here we tackle the important use case of representing field PDFs from N-body simuations. We use
100 high-resolution simulations from the Quijote [12] suite of N-body simulation data (provided
under the MIT License) to generate training patches of the 2D matter field. The simulations were run
in a box size of 1 h−1 Gpc and use 10243 dark matter particles. We use snapshots generated at z = 2
to estimate the matter density by painting the matter particles on a 3D mesh of size 10243 using the
Cloud-in-Cell [13] mass assignment scheme implemented in nbodykit [14]. We are able to resolve
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Figure 3: Left: Comparison of the prior, model, and training set power spectrum averaged over
10,000 maps, for the fNL = 0.2 example. With the correlated prior, the BAO wiggle is resolved
perfectly. Right: Projected matter power spectrum of the N-body simulation samples (red), trained
flow model (black) and correlated input prior (green), averaging over 10,000 maps.

Table 2: N-body non-Gaussianity measurements

f̃ local
NL training f̃ local

NL flow f̃ equi
NL training f̃ equi

NL flow

0.85± 0.041 0.78± 0.29 0.61± 0.24 0.62± 0.24

nonlinear scales of size k ≳ 1 h−1 Mpc. We divide the simulation volume into boxes of size 1283

and project the density to get a realization of a 2D field. We generated 51,200 independent patches.
Limited by GPU memory, larger maps would require a method to patch these 1283 maps together.

We train the same real NVP flow as the previous sections. Training time was 50 hours on an
RTX 3090, using 11 GB of memory. We found faster convergence and better sample quality from a
correlated Gaussian prior with the right power spectrum compared to flowing from Gaussian noise. In
Fig. 3 (right) we find a near perfect power spectrum of the flow. Non-Gaussianity measurements are
recorded in Table 2, sampling over 10,000 training and model maps. The flow is accurate to 5 to 10%.

N-body model samples N-body target sampleModel samples Target samples

Figure 4: N-body simulation samples trained on real NVP flow. Each sample is derived from a 3D
volume of (125 h−1 Mpc)3 by projecting the matter field such that the 2D map has a resolution of
1282 pixels. Left: Model samples from the trained flow. Right: Sample from the training data.

5 Conclusion

The goal of this study is to evaluate how good normalizing flows are at representing PDFs of random
fields in cosmology, both for sampling and density evaluation. We find that we can train flows whose
samples have power spectra and non-Gaussianity accurate to a few percent. We tested the inverse
operation of density evaluation in the analytically tractable Gaussian case and found percent level
accuracy in logP . Using the non-Gaussianity estimation formalism of cosmology [15], we compared
the non-Gaussianity measurement of the flow distribution to the target distribution. Measuring three-
point correlation functions in statistical machine learning may be generally useful to quantify the
performance of normalizing flows in representing PDFs. In upcoming work we will apply these flows
to inference problems in cosmology. For example, analysing a small but deep sky patch with HMC
such as for CMB lensing in [16] would benefit from a non-Gaussian prior distribution of the lensing

4



potential represented with a normalizing flow. Normalizing flows are also suitable for variational
inference of the initial conditions of the matter distribution of the universe. For some applications
it would be useful to make the flow PDF conditionally dependent on astrophysical or cosmological
parameters. Memory constraints will require a patching scheme to represent larger maps, or 3D maps.
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of GPUs, internal cluster, or cloud provider)? [Yes] See Section 2 and Section 4.
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(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 1 for the
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and Section 4 for the Quijote data.
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See Section 1.
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licenses for the real NVP code and Quijote data give us permission, and we used them
for their intended purposes.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We don’t believe it does; we use cosmological
data from simulations.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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