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Abstract

Sub-seasonal climate forecasting (SSF) is the prediction of key climate variables
such as temperature and precipitation on a 2-week to 2-month time horizon. Skillful
SSF would have substantial societal value in areas such as agricultural productivity,
water resource management, and emergency planning for droughts and wildfires.
Despite its societal importance, SSF has stayed a challenging problem and mainly
relies on physics-based dynamical models. Meanwhile, recent studies have shown
the potential of machine learning (ML) models to advance SSF. In this paper,
we show that suitably incorporating dynamical model forecasts as inputs to ML
models can substantially improve their forecasting performance. The SSF dataset
constructed for the work, dynamical model predictions, and code for the ML
models are released along with the paper for the benefit of the broader machine
learning community 1.

1 Introduction

Over the past decade, good quality short-term (few days) weather forecasts as well as long-term
(beyond few months) seasonal forecasts have both become routinely available. These forecasts are
largely based on dynamical models that solve partial differential equations (PDEs) derived from the
laws of physics. In contrast, skillful sub-seasonal forecasts (SSF), i.e., the prediction of key climate
variables such as temperature and precipitation on 2-week to 2-month time scales, are arguably

1The SSF dataset is publicly available at https://sites.google.com/view/ssf-dataset. The code-
base can be found at https://github.com/Sijie-umn/SSF-MIP

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).
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not yet available. Skillful SSF has immense societal value as discussed in two recent reports from
the National Academy of Sciences (NAS) [12, 11]. In particular, high-quality SSF in the western
contiguous United States would allow for better water resource management and emergency planning
for extreme events such as droughts and wildfires [24].

SSF is challenging for a variety of reasons. First, high-quality SSF has proven difficult to accomplish
compared to both short-term weather forecasting and long-term seasonal forecasting [21]. Due to the
chaotic nature of the atmosphere, weather events can not be accurately predicted beyond two weeks
using dynamical models [10]. From a physical point of view, the predictability on sub-seasonal time
scales depends on correctly modeling the atmosphere, ocean, and land, including their interactions and
couplings as well as the memory effects of land and ocean. In addition to these physical complexities,
SSF poses an unconventional time series prediction problem. Given a training set {x1:t, y1:t}, where
y denotes the target response variable, e.g., land temperature, and x denotes suitable covariates,
temporal models typically focus on predicting yt+1 or maybe yt+1:t+τs for small τs. Instead, SSF is
about predicting yt+T :t+T+τl for large T � τs, e.g., weather prediction one month ahead (T = 31
days). The long temporal range along with the nonlinear dynamics and complex interactions makes
SSF challenging.

To understand the conditions that lead to enhanced predictability and to improve sub-seasonal to
seasonal (S2S) forecasts, some research-to-operations projects such as S2S [20] and Subseasonal
Experiment (SubX) [13] have been established. Currently, sub-seasonal forecasts based on dynamical
models are available weekly through the SubX project, which contains 7 different global prediction
models contributing predictions over the period 1999 to present [13]. The project provides real-time
and retrospective forecasts for community exploration of sub-seasonal prediction, but the full utility
of the forecasts for operational forecasting still remains to be determined. Meanwhile, ML models
have started to be explored for predictions of temperature, precipitation, and other climate variables
on sub-seasonal time scales [7, 6, 22, 17], which have shown great promise for SSF. In this paper, we
consider enhancing ML models by using forecasts from state-of-the-art dynamical models from the
SubX project. More specifically, we include physics-based dynamical model forecasts as covariates
in the ML models. The empirical results illustrate that using dynamical model forecasts as inputs
improves the ML model forecasts, and the improvements are statistically significant. In addition, we
release all the data, as well as code to replicate and hopefully extend our work.

2 Sub-seasonal Climate Forecasting

Problem Statement. In climate science, it is more important to predict temperature anomalies than
absolute temperatures. A temperature anomaly is the difference from a baseline temperature, e.g.,
climatology, which is typically a historical long-term average temperature for each calendar day at
each geographic location. A positive temperature anomaly indicates the temperature is warmer than
the historical average, vice versa. In this paper, we focus on forecasting temperature anomalies over
days 15 - 28, i.e., predicting average temperatures anomalies 2 weeks ahead of time, over the western
contiguous U.S. The spatial region is bounded by latitudes 25N-50N and longitudes 93W-125W at 1◦
by 1◦ spatial resolution with 508 grid points. The temporal range of interest is from 2017 to 2019.

Ground Truth Dataset. The ground truth dataset is constructed from NOAA’s Climate Prediction
Center (CPC) Global Gridded Temperature dataset [4], which is commonly applied for forecast
verification by NOAA/CPC [4]. The CPC dataset provides daily max and min 2m temperatures
(tmp2m), which refers to air temperature at 2 meters above the surface, from Jan 1, 1979, to present.
The daily temperature anomalies are computed by subtracting the climatology from the observed
daily tmp2m, where the climatology is the smoothed long-term average of tmp2m over 1990 - 2016
for each month-day combination and grid point. The forecasting target at each date and grid point is
the average of tmp2m anomalies at days 15 to 28 (weeks 3 & 4).

3 Machine Learning and Dynamical Models

Machine Learning Models. In this paper, we focus on two machine learning models which have
been shown to work effectively for sub-seasonal climate forecasting [6].

Gradient boosted trees (XGBoost) [1]. A functional gradient boosting algorithm, of which the weak
learners are regression trees. The algorithm combines multiple weak learners into a stronger learner in
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an iterative manner. At each iteration, a new weak learner is created to correct the previous prediction
and optimize the loss function along with regularization. We build one XGBoost model for each
location, and the best hyper-parameters, such as the maximum depth of a tree, number of gradient
boosted trees, and learning rate, are selected jointly based on the performance over all locations.

Lasso [18, 8]. A regularized linear regression model. Denote yg,t ∈ R and xg,t ∈ Rp as the response
and covariates for a date t and a location g. We assume yg,t = xTg,tθ

∗
g + ε, where ε ∈ R is a

Gaussian noise and θ∗g ∈ Rp is the coefficient for location g. The coefficient θ∗g is estimated by
θ̂g = argminθg∈Rp

1
2T ‖Yg −Xgθg‖22 + λ‖θg‖1, where Yg ∈ RT and Xg ∈ RT×p are the tmp2m

anomalies and covariates for the location g over T dates, respectively. λ is the penalty parameter
shared by all locations.

Covariates. We consider two types of covariates for the ML models, i.e., observational climate data
and forecasts from SubX models.

Observational Climate Data. We select a suitable suite of climate variables representing the condition
of atmosphere, land, and ocean. Spatially over the contiguous U.S., we consider 2m temperature [4],
soil moisture [3], geopotential height, sea level pressure and relative humidity [9]. We also obtain
sea surface temperature [15] over the Pacific Ocean, from latitudes 20S to 65N and longitudes 120E
to 90W, and the Atlantic Ocean, from latitudes 20S to 50N and longitudes 20W to 90W. For each
spatiotemporal variable, we flatten the values at all grid points for each date and compute the top 10
principal components (PCs) as features. The extracted PCs are then normalized by z-scoring for each
month-day combination separately. In addition, we consider climate indices that describe the state of
the climate system or are related to different climate phenomena, including Multivariate ENSO index
[27], Niño indices [15], North Atlantic Oscillation index [19], Madden-Julian Oscillation indices
[23], and Sudden Stratospheric Warming index [5]. The climate indices and the PC-based features of
all spatiotemporal climate variables jointly form the feature set for each date.

SubX Forecasts. We focus on one SubX model, the Climate Forecast System version 2 (CFSv2)
from National Centers for Environmental Prediction (NCEP) [16]. NCEP-CFSv2 is a coupled
atmosphere–ocean–land–ice model and is the operational seasonal prediction model used by the U.S.
Climate Prediction Center. The SubX model has two predictive periods: hindcast and forecast. A
hindcast period (1999-2015) represents the time when a dynamic model re-forecasts historical events
and a forecast period (from July 2017) has real-time predictions generated daily. NCEP-CFSv2
includes four ensemble members and the average of four ensemble members’ outputs are taken as the
forecasts. All forecasts include daily values for 45 days beyond the initialization date. The weeks
3 & 4 outlooks are computed by averaging the forecasts at days 15 - 28 ahead and subtracting the
corresponding climatology computed from the hindcast period.

4 Experimental Setup and Results

Experimental Setup. Since the relationships between the covariates and target variables vary at
different times of the year, test sets are created for each month from July 2017 and separate predictive
models are trained accordingly. The best hyper-parameters of each type of ML model are selected
on a monthly basis. To do so, for each month of the year, e.g. January, we construct five validation
sets containing data from the same month (e.g., January) in 2011 - 2015, and the corresponding
training sets consist of 12 years of data prior to each validation set. The best hyper-parameters are
determined by the average performance over the five validations sets. We thus have 12 sets of the
best hyper-parameters corresponding to each month of the year. Once the best hyper-parameters are
selected, we use 18 years of data prior to a given test set to train the corresponding forecasting model.

Evaluation Metrics. Let y∗ ∈ Rn denote the ground truth observations and ŷ ∈ Rn be the
corresponding predicted values, we consider the following two evaluation metrics.

Cosine Similarity is computed as cos(ŷ,y∗) = 〈ŷ,y∗〉
‖ŷ‖2‖y∗‖2 , where 〈ŷ,y∗〉 denotes the inner product

between the two vectors. Cosine similarity, also known as uncentered anomaly correlation [26], is
the only metric used in the Sub-Seasonal Climate Forecast Rodeo Competition [14, 7].

Relative R2 is defined as 1−
∑n

i=1(y∗
i−ŷi)

2∑n
i=1(y∗

i−ȳtrain)2
, where ȳtrain is the long-term average of tmp2m at each

date and grid point in the training set. Relative R2 is equivalent to 1− Relative MSE and represents
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the relative skill against the best constant predictor, i.e., ȳtrain. A model which achieves a positive
relative R2 is, at least, able to predict the sign of y∗ accurately.

Figure 1: Comparison between the ground truth and forecasts made by NCEP-CFSv2 and XGBoost
on March 10, 2018 (top), which is an example when SubX forecasts mistakenly predict the pattern
with a large magnitude, and Jan 29, 2019 (bottom), when SubX forecasts predict the extreme weather
well. In both cases, predicted values from XGBoost are much smaller than NCEP-CFSv2 forecasts.

Denote the ground truth temperature anomalies as Y ∗ ∈ RT×G for T dates and G grid points. The
spatial predictive skill for a given date t can be evaluated on Y ∗[t, :] (the t-th row of Y ∗), which
corresponds to the ground truth for all grid points at t. The temporal predictive skill for a grid point g
can be evaluated on Y ∗[:, g] (the g-th column of Y ∗), similar to time series prediction evaluation.

Experimental Results. To demonstrate the strengths and limitations of the SubX and the ML model
forecasts, we present forecasts of two days as anecdotal evidence in Figure 1. The first example
shows that, on Mar 10, 2018, XGBoost has reproduced the spatial pattern of the ground truth, while
NCEP-CFSv2 predicts an opposite pattern. The second example on Jan 29, 2019, illustrates that,
when a cold wave affected the U.S. leading to extreme low average tmp2m anomalies [25], the
SubX forecasts successfully estimate the spatial pattern of the ground truth, while XGBoost partially
predicts the spatial pattern. In both examples, the predicted scale from NCEP-CFSv2 is much larger
than XGBoost, and is closer to the scale of the ground truth. These two examples demonstrate that
the SubX models have certain advantage on matching the magnitude of the tmp2m anomalies, while
the ML models are more conservative. On the flip side, in situations where the SubX models do not
predict the spatial pattern correctly, the forecasts can be wrong by a large amount.

Acknowledging the advantages of both types of models, we explore a suitable combination of the ML
models and the SubX forecasts. More specifically, we investigate whether including SubX forecasts
in the feature set of the ML models can enhance their predictive skill. To compare the performance
fairly, we first train a ML model using the samples that are available during the hindcast periods and
then compare it with the ML model that uses SubX forecasts as features.

Table 1: The mean and median (standard error) of spatial cosine similarity and spatial relative R2 of
XGBoost and Lasso with and without including the SubX forecasts in their feature set.

Methods Features cos w/o NCEP cos with NCEP relative R2 w/o NCEP relative R2 with NCEP

XGBoost Mean 0.15 (0.02) 0.18 (0.02) 0.03 (0.01) 0.04 (0.01)
Median 0.21 (0.03) 0.23 (0.02) 0.04 (0.01) 0.04 (0.01)

Lasso Mean 0.19 (0.01) 0.23 (0.02) 0.03 (0.00) 0.05 (0.01)
Median 0.21 (0.02) 0.25 (0.02) 0.03 (0.00) 0.04 (0.01)

Table 1 presents the spatial cosine similarity and relative R2 using XGBoost and Lasso, with and
without the inclusion of SubX forecasts in the feature set. The temporal results are shown in Figure 2.
Adding NCEP-CFSv2 forecasts in the feature set leads to a significant enhancement of predictive
skill. We conduct the sign test introduced in [2] to compare the differences in forecast skills. Overall,
comparison of ML models’ performance with and without SubX features yields p values much
smaller than 0.01. Furthermore, as shown in Figure 2, the combination of the ML models and
the SubX forecasts effectively converts some negative temporal cosine similarity to positive and
strengthens the forecasts originally achieving positive temporal cosine similarity. The improvement
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(a) Temporal cosine similarity (b) Temporal relative R2

Figure 2: The temporal cosine similarity and relative R2 of XGBoost and Lasso with and without
NCEP-CFSv2 forecasts as features. Including SubX forecasts in the feature set evidently improves
the forecasting performance, especially for the central U.S. (top right corner, marked by blue frames).

is particularly outstanding for the west-north-central U.S., where temperature fluctuations are more
drastic compared to the coastal areas. Similarly, regarding temporal relative R2, both ML models
obtain some improvements in the areas originally characterized by values close to 0 (white). These
results highlight the potential to further increase predictive skill of the ML models by incorporating
SubX forecasts.

However, to include SubX forecasts in the feature set, the size of the training set is decided by the
availability of the hindcast period for SubX models. For example, the features constructed from
observational climate variables are available from 1990, while the hindcast period of NCEP-CFSv2
starts in 1999. The relatively short hindcast period leads to a reduction of almost one third of the
data for model training. The small sample size restrains the forecasting performance of the XGBoost
model, which explains why Lasso achieves higher prediction accuracy than XGBoost. We anticipate
that more hindcast data from SubX models would lead to a notable improvement in the predictive
skills of the ML models.

5 Discussion & Conclusions

In this paper, sub-seasonal climate forecasting, an important but challenging scientific problem,
is introduced to the machine learning community. Acknowledging the strengths of both machine
learning and physics-based dynamical models, we explore the potential in generating skillful SSF by
combining such two types of models. We obtain significant improvements in predictive performance
by including the SubX forecasts as a new feature of ML models. To extend our work, which focuses
on ML models for deterministic forecasting in SSF, future studies could explore probabilistic ML
models to obtain the uncertainty of the forecasts.

Acknowledgements

The research was supported by NSF grants OAC-1934634, IIS-1908104, IIS-1563950, IIS-1447566,
IIS-1447574, IIS-1422557, CCF-1451986. The authors would like to acknowledge the high-
performance computing support from Casper provided by NCAR’s Computational and Information
Systems Laboratory, sponsored by the National Science Foundation.

References
[1] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages
785–794, 2016.

[2] Timothy DelSole and Michael K Tippett. Forecast comparison based on random walks. Monthly Weather
Review, 144(2):615–626, 2016.

5



[3] Yun Fan and Huug van den Dool. Climate prediction center global monthly soil moisture data set at 0.5
resolution for 1948 to present. Journal of Geophysical Research: Atmospheres, 109(D10), 2004.

[4] Yun Fan and Huug Van den Dool. A global monthly land surface air temperature analysis for 1948–present.
Journal of Geophysical Research: Atmospheres, 113(D1), 2008.

[5] Ronald Gelaro, Will McCarty, Max J Suárez, Ricardo Todling, Andrea Molod, Lawrence Takacs, Cynthia A
Randles, Anton Darmenov, Michael G Bosilovich, Rolf Reichle, et al. The modern-era retrospective
analysis for research and applications, version 2 (merra-2). Journal of climate, 30(14):5419–5454, 2017.

[6] Sijie He, Xinyan Li, Timothy DelSole, Pradeep Ravikumar, and Arindam Banerjee. Sub-seasonal climate
forecasting via machine learning: Challenges, analysis, and advances. AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[7] Jessica Hwang, Paulo Orenstein, Judah Cohen, Karl Pfeiffer, and Lester Mackey. Improving subseasonal
forecasting in the western us with machine learning. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2325–2335. ACM, 2019.

[8] Ali Jalali, Pradeep Ravikumar, and Sujay Sanghavi. A dirty model for multiple sparse regression. IEEE
Transactions on Information Theory, 59(12):7947–7968, 2013.

[9] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White,
J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang,
A. Leetmaa, R. Reynolds, Roy Jenne, and Dennis Joseph. The ncep/ncar 40-year reanalysis project.
Bulletin of the American Meteorological Society, 77(3):437–472, 1996.

[10] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141, 1963.

[11] National Academies of Sciences. Next generation earth system prediction: strategies for subseasonal to
seasonal forecasts. National Academies Press, 2016.

[12] National Research Council. Assessment of intraseasonal to interannual climate prediction and predictabil-
ity. National Academies Press, 2010.

[13] Kathy Pegion, Ben P. Kirtman, Emily Becker, Dan C. Collins, Emerson LaJoie, Robert Burgman, Ray Bell,
Timothy DelSole, Dughong Min, Yuejian Zhu, Wei Li, Eric Sinsky, Hong Guan, Jon Gottschalck, E. Joseph
Metzger, Neil P Barton, Deepthi Achuthavarier, Jelena Marshak, Randal D. Koster, Hai Lin, Normand
Gagnon, Michael Bell, Michael K. Tippett, Andrew W. Robertson, Shan Sun, Stanley G. Benjamin,
Benjamin W. Green, Rainer Bleck, and Hyemi Kim. The subseasonal experiment (subx): A multimodel
subseasonal prediction experiment. Bulletin of the American Meteorological Society, 100(10):2043–2060,
2019.

[14] David Raff, Kenneth Nowak, Robert Cifelli, Levi D Brekke, and Robert Stabler Webb. Sub-seasonal
climate forecast rodeo. In AGU Fall Meeting, 2017.

[15] Richard W Reynolds, Thomas M Smith, Chunying Liu, Dudley B Chelton, Kenneth S Casey, and
Michael G Schlax. Daily high-resolution-blended analyses for sea surface temperature. Journal of
Climate, 20(22):5473–5496, 2007.

[16] Suranjana Saha, Shrinivas Moorthi, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, David
Behringer, Yu-Tai Hou, Hui-ya Chuang, Mark Iredell, et al. The ncep climate forecast system version 2.
Journal of climate, 27(6):2185–2208, 2014.

[17] Vishwak Srinivasan, Justin Khim, Arindam Banerjee, and Pradeep Ravikumar. Subseasonal climate
prediction in the western us using bayesian spatial models. Conference on Uncertainty in Artificial
Intelligence (UAI), 2021.

[18] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society,, pages 267–288, 1996.

[19] HM Van den Dool, S Saha, and AAke Johansson. Empirical orthogonal teleconnections. Journal of
Climate, 13(8):1421–1435, 2000.

[20] F Vitart, C Ardilouze, A Bonet, A Brookshaw, M Chen, C Codorean, M Déqué, L Ferranti, E Fucile,
M Fuentes, et al. The subseasonal to seasonal (s2s) prediction project database. Bulletin of the American
Meteorological Society, 98(1):163–173, 2017.

[21] Frédéric Vitart, Andrew W Robertson, and David LT Anderson. Subseasonal to seasonal prediction project:
Bridging the gap between weather and climate. Bulletin of the World Meteorological Organization, 61(23),
2012.

6



[22] Jonathan A Weyn, Dale R Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal forecasting
with a large ensemble of deep-learning weather prediction models. arXiv preprint arXiv:2102.05107, 2021.

[23] Matthew C. Wheeler and Harry H. Hendon. An all-season real-time multivariate mjo index: Development
of an index for monitoring and prediction. Monthly Weather Review, 132(8):1917–1932, 2004.

[24] Christopher J White, Henrik Carlsen, Andrew W Robertson, Richard JT Klein, Jeffrey K Lazo, Arun
Kumar, Frederic Vitart, Erin Coughlan de Perez, Andrea J Ray, Virginia Murray, et al. Potential applications
of subseasonal-to-seasonal (s2s) predictions. Meteorological applications, 24(3):315–325, 2017.

[25] Wikipedia. January–February 2019 North American cold wave. https://en.wikipedia.org/wiki/
January-February_2019_North_American_cold_wave, 2019.

[26] Daniel S Wilks. Statistical methods in the atmospheric sciences, volume 100. Academic press, 2011.

[27] Tao Zhang, Andrew Hoell, Judith Perlwitz, Jon Eischeid, Donald Murray, Martin Hoerling, and Thomas M
Hamill. Towards probabilistic multivariate enso monitoring. Geophysical Research Letters, 46(17-
18):10532–10540, 2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

7

https://en.wikipedia.org/wiki/January-February_2019_North_American_cold_wave
https://en.wikipedia.org/wiki/January-February_2019_North_American_cold_wave

	Introduction
	Sub-seasonal Climate Forecasting
	Machine Learning and Dynamical Models
	Experimental Setup and Results
	Discussion & Conclusions

