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Abstract

The large-scale structure of the Universe is the direct consequence of its evolution
over billions of years. The observations of this large-scale structure in terms of
galaxy redshift surveys contain valuable cosmological information and in order to
extract that information, we need to compare these observations to corresponding
theory predictions from cosmological simulations, whose generation in itself is
a very computationally intensive feat. This work uses deep convolutional neural
networks to simulate the large-scale structure of the Universe and generate a
typical cosmological simulation orders of magnitude faster than the standard N-
body simulations within an accuracy of ∼ 1% on the most common cosmological
summary statistics. The most important feature of our model is that it extrapolates
extremely well on universes with entirely different cosmologies than the one it has
been trained on. The use of such an approach will be particularly useful in the near
future to compare theory with predictions, to generate mock galaxy catalogs, to
compute covariance matrices, and to optimize observational strategies.

1 Introduction

Cosmology and Astrophysics are in constant need of accurate theoretical predictions to compare
with the state-of-the-art observations of numerous current and upcoming galaxy surveys. In the
absence of analytical methods for computing quantities of interest, cosmological simulations are
the only tool that provides the most rigorous theoretical predictions of the evolution and structure
formation in the Universe. The traditional N-body simulations of the Universe are very accurate but
are computationally expensive to generate. On the other hand, the fast approximations to the N-body
simulations are computationally inexpensive but compromise accuracy on nonlinear scales. So, we
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need tools that can overcome these limitations and generate fast as well as accurate simulations for
cosmological analyses.

In this work, we have developed a deep learning-based Convolutional Neural Network (CNN) model
capable of mapping from Fast Approximations to N-body simulations of the Universe. Specifically,
we have shown that our model

• is able to generate simulated universes within an accuracy of ∼ 1% on commonly employed
cosmological summary statistics such as power spectrum and bispectrum down to scales as
small as k = 1 hMpc−1.

• is at least 4 orders of magnitude faster than the N-body simulations.

• extrapolates extremely well on very different cosmologies, outperforming the previous
state-of-the-art model [1].

2 Methods

N-body simulations are a suite of cosmological simulations in which the Cold Dark Matter (CDM)
particles are evolved under the effect of gravity alone. The simulation starts with particles only slightly
perturbed from a uniform grid using the Lagrangian Perturbation Theory (LPT). During the simulation,
a particle moves from its initial (Lagrangian) position xi to its final position xf = xi + ∆(xi), where
the displacement vector ∆ is a function of the initial positions. A typical N-body simulation takes
thousands of timesteps to solve the dynamics of billions of particles, rendering them computationally
expensive. Unlike the N-body methods, fast approximation methods integrate only tens of timesteps to
generate relatively less accurate simulations. In this work, we use the Lagrangian Perturbation Theory
to generate the fast approximations of the Universe using the COmoving Lagrangian Acceleration
(COLA) [7] method. COLA decouples the large and small scales of the Universe and evolves them
separately using second-order Lagrangian Perturbation Theory (2LPT) [2] and N-body methods
respectively. It utilizes the fact that the large-scales are well-described using LPT [8] and that the
time integration for the large scales in N-body codes simply solves for the linear growth factor whose
exact value is easily available in any standard textbook [3]. This allows us to take large N-body
timesteps and save a lot of computations, and at the same time keep the accuracy on the largest scales.
In addition, the Zel’dovich simulation is a significantly faster approximation to the N-body simulation
produced by first-order perturbation theory.

2.1 Input, Target and Benchmark

The displacement field of a set of particles is given by ∆ = ~xf − ~xi, where ~xf are the final positions
of the particles at redshift 0, which corresponds to the current epoch of the Universe, and ~xi are the
initial (Lagrangian) positions of the same particles on a uniform grid. We build a V-Net [5] based
CNN that maps from the COLA displacement field (input) to the N-body displacement field (target)
by training on their residual (∆Nbody −∆COLA).

We use 100 N-body simulations with a fiducial cosmology from the publicly available Quijote [9]
suite that are run in a periodic box of length 1000 Mpc h−1 and follow the evolution of 5123 CDM
particles from z = 127 to z = 0. The COLA simulations are run with the publicly available MG-
PICOLA [10] package for 30 timesteps with the same number of particles, parameter configuration,
and random seeds as the N-body simulations to ensure the same initial conditions for both.

In order to compare the predictions of our model, NN(COLA), we have used three kinds of bench-
marks: (1) COLA, which represents the results of running the COLA simulation itself, (2) ZA, where
the positions of the particles at z = 0 are computed using the Zel’dovich approximation, and (3)
NN(ZA), our model trained on ZA simulations.

2.2 Model

We use a V-Net [5] based model, inspired by Alves de Oliveira et al. [1] that consists of 2 downsam-
pling and 2 upsampling layers connected in a "V" shape. Blocks of two 33 convolutions connect the
input, the resampling, and the output layers. 13 convolutions are added over each of these convolution
blocks to realize a residual connection. We add batch normalization after every convolution except
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the first one and the last two, and leaky ReLU activation with negative slope 0.01 after every batch
normalization, as well as the first and the second to last convolutions. The last activation in each
residual block acts after the summation, following Milletari et al. [5]. As in U-Net/V-Net, at all
except the bottom resolution levels, the inputs to the downsampling layers are concatenated to the
outputs of the upsampling layers. All layers have a channel size of 64, except for the input and the
output, that have 3 channels, as well as those after concatenations (128-channeled). Finally, the input
(∆COLA) is directly added to the output, so that the network could learn the corrections to match
the target (∆Nbody). Stride-2 23 convolutions and stride-1/2 23 transposed convolutions are used in
downsampling and upsampling layers, respectively.

Following Alves de Oliveira et al. [1], we composed a loss function given by L = log(LδL
λ
∆), where

Lδ is the Mean Squared Error (MSE) loss on n(x), the particle number in voxel x and L∆ is the MSE
on ∆, the displacement field. By combining the two losses with logarithm rather than summation,
we can ignore their absolute magnitudes and trade between their relative values. λ here serves as a
weight on this trade-off of relative losses and we have used λ = 1 in this work.

The input, owing to the big size of the data (3 × 5123) is cropped into smaller subcubes of size
3× 1283, corresponding to a length of 250 Mpc h−1. In order to preserve the physical translational
equivariance, no padding has been used in the 33 convolutions, which results in an output that is
smaller than the input in spatial size. This limitation is compensated by padding the input cubes
periodically with 20 voxels on each side, so that the effective spatial size of the input becomes 3×1643.
Furthermore, data augmentation is implemented to enforce the equivariance of displacement fields
under rotational and parity transformations. We use the Adam optimizer [4] with a learning rate
of 0.0001, β1 = 0.9 and β2 = 0.999, and reduce the learning rate by half when the loss does not
improve for 3 epochs. The model is trained on 70 realizations for 100 epochs and the remaining
realizations are used for validation (20) and final testing (10).

3 Results

Figure 1 shows the predictions of our model, NN(COLA), on the test set of 10 realizations using
the most commonly employed statistics in cosmology, the power spectrum, P (k) (top left) and the
bispectrum, B(k) (top right). The power spectrum quantifies the correlation of density fluctuations
as a function of scale (the wavenumber k denotes the scale, with low/high k representing large/small
scales), and the bispectrum quantifies correlations in closed triangles in fourier space. For the
bispectrum, we show the triangle configuration with k1 = 0.15 hMpc−1 and k2 = 0.25 hMpc−1 as
a function of the angle θ between k1 and k2.

The transfer function, T (k) (middle left), is the square root of the ratio of the predicted power spectra
and the target power spectra. rδ is the cross-correlation coefficient that quantifies the correlation
between the phases of different fourier modes and 1−r2

δ (bottom left) gives the amount of unexplained
variance between the predicted and the target fields. A T (k) = 1 and 1− r2

δ = 0 signify a perfect
emulation of the N-body field by the model. The target (N-body simulations) and the primary
benchmark, COLA, are shown with solid black and blue dotted curves respectively. NN(COLA)
(red dashed line) shows the predictions of our model with COLA as input. In order to see how
Zeldovich (ZA) approximations compare to the COLA simulations as the model input, we have also
performed a standard ZA to N-body mapping with our model and NN(ZA) (yellow solid line) refers
to the predictions of our model with ZA as input. Our model when trained on COLA simulations
(NN(COLA)), outperforms the benchmark simulations (COLA) as well as its predictions when it is
trained on ZA approximations (NN(ZA)), producing percent-level accurate results down to scales as
small as k ∼ 1 hMpc−1 and establishing COLA as a much better choice for model training than the
ZA approximations.

A typical N-body simulation takes roughly 500 CPU hours to run, or ∼ 106 CPU seconds, while a
single COLA simulation takes around 3 CPU hours or ∼ 104 CPU seconds (on an 408 Intel Skylake).
Our model, on the other hand, takes ∼ 125 GPU-seconds to run on a single GPU (320 NVIDIA
P100-16GB) using the PyTorch [6] framework. A runtime comparison of the target, benchmark, and
our model is shown in Table 1. Thus, in practice, the main limitation of our model comes from the
computational cost associated with running COLA simulations itself. Despite this, our model allows
us to speed up the computational cost by a factor of 100.
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Figure 1: The left plot shows the 3D matter power spectrum (top), the transfer function (middle) and
the cross-correlation coefficient (bottom), while the right plot shows the bispectrum (top) and the
bispectrum ratio (bottom) for the target N-body simulations (black solid), the primary benchmark cola
simulations (blue dotted), the ZA approximations (green dashed-dotted), and the model predictions
with ZA as input (yellow solid) and COLA as input (red dashed). Our model (red dashed line)
outperforms the benchmark (blue dotted) in all cases.

Table 1: Runtime benchmark

Simulation N-Body (QUIJOTE) Fast (COLA) Model (GPU)

CPU-/GPU-sec 106 104 125

3.1 Model Extrapolation

For all the model training and testing so far, we have used simulations with a fixed value of cosmo-
logical parameters (ns = 0.9624, σ8 = 0.834, h = 0.6711,Ωm = 0.3175,Ωb = 0.049). Different
choices of these parameters change the large-scale structure of the Universe. In order to further test
the performance and robustness of our model, we test it on a set of 100 simulations with different
cosmologies spanning the range Ωm ∈ [0.1, 0.5], Ωb ∈ [0.03, 0.07], h ∈ [0.5, 0.9], ns ∈ [0.8, 1.2]
and σ8 ∈ [0.6, 1.0]. All the five cosmological parameters in these simulations (as well as the random
seed) are varied together so that no pair of universes has a single identical parameter. This means that
the structure formation in these universes proceeds in entirely different ways than the ones used in the
training, thus providing very diverse displacement fields to test the model. In Figure 2, we compare
our model predictions (right) to the model by Alves de Oliveira et al. [1] (left) which maps from
the ZA approximations to the N-body simulations, denoted by NN(ZA)dO. We find that our model
captures the variations between different universes with surprising accuracy: below ' 1% down to
k = 1 hMpc−1 and outperforms the extrapolations predicted by the state-of-the-art model [1]. From
a computational viewpoint, this also suggests that our model is capable of generating simulations
for a diverse range of cosmological parameters, with minimal training data and can be deployed to
generate simulations from a wide range of parameters beyond the parameter space covered by the
training data.

4 Conclusions

In this work, we have shown that neural networks can efficiently and accurately emulate the compu-
tationally expensive N-body simulations. By computing a variety of summary statistics, we show
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Figure 2: The figure shows the transfer function (top) and the cross-correlation coefficient (bottom)
for 100 simulations with different cosmologies using the model by Alves de Oliveira et al. [1] (left)
and our model (right). The red lines represent the median while the blue lines represent the 16th
(and 84th) percentile of the predictions. Our model outperforms the model by Alves de Oliveira et al.
[1] and also does a relatively better job of smoothing out the baryon acoustic oscillations (the bump
around k = 0.04 hMpc−1) over the 100 realizations used.

that our model perfectly reproduces the N-body simulations down to highly nonlinear scales with
k = 1 hMpc−1 with an accuracy of ∼ 1%, and outperforms the benchmark COLA simulations.
Furthermore, our model generalizes very well to the universes with different cosmologies on which it
is never trained, with an accuracy of ∼ 1% on power spectrum and cross-correlation coefficient, all
the while outperforming the state-of-the-art emulators. Our approach also renders the time needed to
generate a typical cosmological simulation four orders of magnitude less than a traditional N-body
simulation.

Broader Impact

In the era of multi-billion dollar cosmological surveys mapping the entire sky and generating heaps of
observational data, it is indispensable to develop faster and accurate tools to generate corresponding
theoretical predictions. Our work provides one such tool by using deep neural networks to emulate the
Universe as accurately and as generally as possible. It also speeds up the generation of computationally
expensive numerical simulations by at least two orders of magnitude. Our model captures most of
the non-linear astrophysics involved in the process of structure formation at smaller scales of the
Universe very well. This in turn, increases the scientific return of these billion dollar projects in time
as well as in accuracy.

Data availability

The trained models, predictions and statistics extracted from the testing are hosted under the public
github repository cola-to-nbody1 and the model training has been performed with the map2map2

code. The N-body data has been taken from the Quijote-simulations3 while the COLA sim-
ulations have been generated using the MG-PICOLA-PUBLIC 4 code. Quijote-simulations is
publicly available under an MIT license and the other three are available under a GNU General Public
License.

1https://github.com/neeravkaushal/cola-to-nbody.git
2https://github.com/eelregit/map2map.git
3https://github.com/franciscovillaescusa/Quijote-simulations.git
4https://github.com/HAWinther/MG-PICOLA-PUBLIC.git
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