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Abstract

Generating the periodic structure of stable materials is a long-standing challenge
for the material design community. This task is difficult because stable materials
only exist in a low-dimensional subspace of all possible periodic arrangements of
atoms: 1) the coordinates must lie in the local energy minimum defined by quantum
mechanics, and 2) global stability also requires the structure to follow the complex,
yet specific bonding preferences between different atom types. Existing methods
fail to incorporate these factors and often lack proper invariances. We propose a
Crystal Diffusion Variational Autoencoder (CDVAE) that captures the physical
inductive bias of material stability. By learning from the data distribution of stable
materials, the decoder generates materials in a diffusion process that moves atomic
coordinates towards a lower energy state and updates atom types to satisfy bonding
preferences between neighbors. Our model also explicitly encodes interactions
across periodic boundaries and respects permutation, translation, rotation, and
periodic invariances. We significantly outperform past methods in three tasks:
1) reconstructing the input structure, 2) generating valid, diverse, and realistic
materials, and 3) generating materials that optimize a specific property. We also
provide several standard datasets and evaluation metrics for the broader machine
learning community.

1 Introduction

Solid state materials, represented by the periodic arrangement of atoms in the 3D space, are the
foundation of many key technologies including solar cells, batteries, and catalysis [1]. Despite
the rapid progress of molecular generative models and their significant impact on drug discovery,
the problem of material generation has many unique challenges. Compared with small molecules,
materials have more complex periodic 3D structures and cannot be adequately represented by a
simple graph like small molecules (Figure 1). In addition, materials can be made up of more than 100
elements in the periodic table, while molecules are generally only made up of a small subset of atoms
such as carbon, oxygen, and hydrogen. Finally, the data for training ML models for material design
is limited. There are only ∼200k experimentally known inorganic materials, collected by the ICSD
[2], in contrast to close to a billion purchasable molecules in ZINC [3].

The key challenge of this task is in generating stable materials. Such materials only exist in a
low-dimensional subspace of all possible periodic arrangements of atoms: 1) the atom coordinates
must lie in the local energy minimum defined by quantum mechanics (QM); 2) global stability also
requires the structure to follow the complex, yet specific bonding preferences between different atom
types (section 2). The issue of stability is unique to material generation because valency checkers
assessing molecular stability are not applicable to materials. Moreover, we also have to encode the
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interactions crossing periodic boundaries (Figure 1, middle), and satisfy permutation, translation,
rotation, and periodic invariances (Appendix C). Our goal is to learn representations that can learn
features of stable materials from data, while adhering to the above invariance properties.
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Figure 1: The periodic structure of diamond. The left shows
the infinite periodic structure, the middle shows a unit cell
representing the periodic structure, and the right shows a
multi-graph [4] representation.

We address these challenges by learn-
ing a variational autoencoder (VAE)
[5] to generate stable 3D materi-
als directly from a latent representa-
tion without intermediates like graphs.
The key insight is to exploit the fact
that all materials in the data distribu-
tion are stable, therefore if noise is
added to the ground truth structure,
denoising it back to its original struc-
ture will likely increase stability. We capture this insight by designing a noise conditional score
network (NCSN) [6] as our decoder: 1) the decoder outputs gradients that drive the atom coordinates
to the energy local minimum; 2) it also updates atom types based on the neighbors to capture the
specific local bonding preferences (e.g., Si-O is preferred over Si-Si and O-O in SiO2). During gen-
eration, materials are generated using Langevin dynamics that gradually deforms an initial random
structure to a stable structure. To capture the necessary invariances and encode the interactions cross-
ing periodic boundaries, we use SE(3) equivariant graph neural networks adapted with periodicity
(PGNNs) for both the encoder and decoder of our VAE.

Our theoretical analysis (Appendix E) further reveals an intriguing connection between the gradient
field learned by our decoder and an harmonic force field. De facto, the decoder utilizes the latter
to estimate the forces on atoms when their coordinates deviate from the equilibrium positions.
Consequently, this formulation provides an important physical inductive bias for generating stable
materials.

In this work, we propose Crystal Diffusion Variational AutoEncoder (CDVAE) to generate stable
materials by learning from the data distribution of known materials. Our main contributions include:

• We curate 3 standard datasets from QM simulations and create a set of physically meaningful
tasks and metrics for the problem of material generation.

• We incorporate stability as an inductive bias by designing a noise conditional score network
as the decoder of our VAE, which allows us to generate significantly more realistic materials.

• We encode permutation, translation, rotation, and periodic invariances, as well as interactions
crossing periodic boundaries with SE(3) equivariant GNNs adapted with periodicity.

• Empirically, our model significantly outperforms past methods in tasks including recon-
structing an input structure, generating valid, diverse, and realistic materials, and generating
materials that optimize specific properties.

2 Preliminaries

Periodic structure of materials. Any material structure can be represented as the periodic arrange-
ment of atoms in the 3D space. As illustrated in Figure 1, we can always find a repeating unit,
i.e. a unit cell, to describe the infinite periodic structure of a material. A unit cell that includes N
atoms can be fully described by 3 sets: 1) atom types A = (a0, ..., aN ) ∈ AN , where A denotes
the set of all chemical elements; 2) atom coordinates X = (x0, ...,xN ) ∈ RN×3; and 3) periodic
lattice L = (l1, l2, l3) ∈ R3×3. The periodic lattice defines the periodic translation symmetry of the
material. Given M = (A,X,L), the infinite periodic structure can be represented as,

{(a′i,x′i)|a′i = ai,x
′
i = xi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, (1)

where k1, k2, k3 are any integers that translate the unit cell using L to tile the entire 3D space.

The composition of a material denotes the ratio of different elements that the material is composed
of. Given the atom types of a material with N atoms A ∈ AN , the composition can be represented
as c ∈ R|A|, where ci > 0 denotes the percentage of atom type i and

∑
i ci = 1. For example, the

composition of diamond in Figure 1 has c6 = 1 and ci = 0 for i 6= 6 because 6 is the atomic number
of carbon.
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Figure 2: Overview of the proposed CDVAE approach.

Problem definition and its physical origin. Our goal is to generate novel, stable materials M =
(A,X,L) ∈ AN × RN×3 × R3×3 by learning from the empirical distribution of experimentally
observed stable materials. The space of stable materials is a subspace in AN × RN×3 × R3×3 that
satisfies the following constraints. 1) The materials lie in the local minimum of the energy landscape
defined by quantum mechanics, with respect to the atom coordinates and lattice, i.e. ∂E/∂X = 0
and ∂E/∂L = 0. 2) The material is globally stable and thus cannot decompose into nearby phases.
Global stability is strongly related to bonding preferences between neighboring atoms. For example,
in SiO2, each Si is surrounded by 4 O and each O is surrounded by 2 Si. This configuration is caused
by the stronger bonding preferences between Si-O than Si-Si and O-O.

3 Overview of Proposed Method

Our approach generates new materials via a two-step process: 1) We sample a z from the latent space
and use it to predict 3 aggregated properties of a material: composition (c), lattice (L), and number
of atoms (N ), which are then used to randomly initialize a material structure M̃ = (Ã, X̃,L). 2)
We perform Langevin dynamics to simultaneously denoise X̃ and Ã conditioned on z to improve
both the local and global stability of M̃ and generate the final structure of the new material.

To train our model, we optimize 3 networks concurrently using stable materials M = (A,X,L)
sampled from the data distribution. 1) A periodic GNN encoder PGNNENC(M) that encodes M
into a latent representation z. 2) A property predictor MLPAGG(z) that predicts the c, L, and N of
M from z. 3) A periodic GNN decoder PGNNDEC(M̃ |z) that denoises both X̃ and Ã conditioned
on z. For 3), the noisy structure M̃ = (Ã, X̃,L) is obtained by adding different levels of noise
to X and A. The noise schedules are defined by the predicted aggregated properties, with the
motivation of simplifying the task for our decoder from denoising an arbitrary random structure
from over ∼100 elements to a constrained random structure from predicted properties. We train all
three networks together by minimizing a combined loss including the aggregated property loss LAGG,
decoder denoising loss LDEC, and a KL divergence loss LKL for the VAE.

To capture the interactions across periodic boundaries, we employ a multi-graph representation
(Appendix B) for both M and M̃ . We also use SE(3) equivariant GNNs adapted with periodicity
as both the encoder and the decoder to ensure the permutation, translation, rotation, and periodic
invariances of our model. The CDVAE is summarized in Figure 2 and we explain the individual
components of our method in Appendix D and the implementation details in Appendix F.

4 Experiments

We evaluate multiple aspects of material generation that are related to real-world material discovery
process. Past studies in this field used very different tasks and metrics, making them difficult to
compare. Building upon past studies [7, 8], we create a set of standard tasks, datasets, and metrics to
evaluate and compare models for material generation. Models are trained on single RTX 2080 GPUs.
Training generally takes 5-10 hours, and the Langevin dynamics takes 1-3 hours.

Tasks. We focus on 2 tasks for material generation. 1) Reconstruction evaluates the ability of the
model to reconstruct the original material from its latent representation z. 2) Generation evaluates
the validity, coverage, and property statistics of material structures generated by the model. 3)
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Table 1: Reconstruction performance.

Method Match rate (%) ↑ RMSE ↓
Perov-5 Carbon-24 MP-20 Perov-5 Carbon-24 MP-20

FTCP 99.34 62.28 69.89 0.0259 0.2563 0.1593
Cond-DFC-VAE 51.65 – – 0.0217 – –
CDVAE 97.52 55.22 45.43 0.0156 0.1251 0.0356

Property optimization evaluates the model’s ability to generate materials that are optimized for a
specific property.

Datasets. We curated 3 datasets obtained from quantum mechanical simulations. 1) Perov-5 [9, 10]
includes 18928 perovskite materials that share the same structure but differ in composition.2) Carbon-
24 [11] includes 10153 materials that are all made up with carbon atoms but differ in structures.
3) MP-20 [12] includes 45231 materials that differ in both structure and composition. Perov-5
and Carbon-24 are toy datasets and many materials are hypothetical. MP-20 is a realistic dataset
and includes most experimentally known materials with no more than 20 atoms. We use a 60-
20-20 random split for all of our experiments. Details regarding dataset curation can be found at
Appendix A.

Baselines. We compare CDVAE with the following 4 baselines, which include the latest coordinate-
based, voxel-based, and 3D molecule generation methods. FTCP [8] is a crystal representation
that concatenates real-space properties (atom positions, atom types, etc.) and Fourier-transformed
momentum-space properties (diffraction pattern). A 1D CNN-VAE is trained over this representation
for crystal generation. Cond-DFC-VAE [7] encodes and generates crystals with 3D density maps,
while employing several modifications over the previous Voxel-VAE [13] method. However, the
effectiveness is only demonstrated for cubic systems, limiting its usage to the Perov-5 dataset. G-
SchNet [14] is an auto-regressive model that generates 3D molecules by performing atom-by-atom
completion using SchNet [15]. Since G-SchNet is unaware of periodicity and cannot generate the
lattice L. We adapt G-SchNet to our material generation tasks by constructing the smallest oriented
bounding box with PCA such that the introduced periodicity does not cause structural invalidity.
P-G-SchNet is our modified G-SchNet that incorporates periodicity. During training, the SchNet
encoder inputs the partial periodic structure to predict next atoms. During generation, we first
randomly sample a lattice L from training data and autoregressively generate the periodic structure.

4.1 Material reconstruction

Setup. The first task is to reconstruct the material from its latent representation. We evaluate
reconstruction performance by matching the generated structure and the input structure for all
materials in the test set. Definitions of match rate and RMSE are detailed in Appendix G.1.

Results. The reconstructed structures are shown in Figure 3 and the metrics are in Table 1. Since
our model is SE(3) invariant, the generated structures may be a translated (or rotated) version of the
ground truth structure. Our model has a lower RMSE than all other models, indicating its stronger
capability to generate realistic structures. FTCP has a higher match rate than our model in Perov-5
and MP-20. This could be explained by fact that the same set of local structures can be assembled into
different materials globally (e.g., two different crystal forms of ZnS). Our model is SE(3) invariant
and only encodes local structures, while FTCP directly encodes the global structures via absolute
coordinates and types of each atom. In Figure 4, we show that CDVAE can generate different
plausible arrangement of atoms by sampling 3 Langevin dynamics with different random seeds from
the same z.

4.2 Material generation

Setup. The second task is to generate novel, stable materials that are distributionally similar to the
test materials. The only high-fidelity evaluation of stability of generated materials is to perform

2Some metrics unsuitable for specific datasets have “–” values in the table.
3For comparison, the ground truth structure validity is 100.0 % for all datasets, and ground truth composition

validity is 98.60 %, 100.0 %, 91.13 % for Perov-5, Carbon-24, and MP-20.
4Due to the low validity of FTCP, we instead randomly generate 100,000 materials fromN (0, 1) and use

1,000 materials from those valid ones to compute diversity and property statistics metrics.
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Table 2: Generation performance2.

Method Data Validity (%) 3 ↑ COV (%) ↑ Property Statistics ↓
Struc. Comp. R. P. ρ E # elem.

FTCP 4 Perov-5 0.24 54.24 0.00 0.00 10.27 156.0 0.6297
Carbon-24 0.08 – 0.00 0.00 5.206 19.05 –
MP-20 1.55 48.37 4.72 0.09 23.71 160.9 0.7363

Cond-DFC-VAE Perov-5 73.60 82.95 73.92 10.13 2.268 4.111 0.8373
G-SchNet Perov-5 99.92 98.79 0.18 0.23 1.625 4.746 0.03684

Carbon-24 99.94 – 0.00 0.00 0.9427 1.320 –
MP-20 99.65 75.96 38.33 99.57 3.034 42.09 0.6411

P-G-SchNet Perov-5 79.63 99.13 0.37 0.25 0.2755 1.388 0.4552
Carbon-24 48.39 – 0.00 0.00 1.533 134.7 –
MP-20 77.51 76.40 41.93 99.74 4.04 2.448 0.6234

CDVAE Perov-5 100.0 98.59 99.45 98.46 0.1258 0.0264 0.0628
Carbon-24 100.0 – 99.80 83.08 0.1407 0.2850 –
MP-20 100.0 86.70 99.15 99.49 0.6875 0.2778 1.432

Table 3: Property optimization performance.

Method Perov-5 Carbon-24 MP-20
SR5 SR10 SR15 SR5 SR10 SR15 SR5 SR10 SR15

FTCP 0.06 0.11 0.16 0.0 0.0 0.0 0.02 0.04 0.05
Cond-DFC-VAE 0.55 0.64 0.69 – – – – – –
CDVAE 0.52 0.65 0.79 0.0 0.06 0.06 0.78 0.86 0.90

QM calculations, but it is computationally prohibitive to use QM for computing evaluation metrics.
We developed several physically meaningful metrics to evaluate the validity, coverage (COV), and
property statistics of generated materials, as detailed in Appendix G.2. Validity and coverage are
computed over 10,000 materials randomly sampled from N (0, 1). Property statistics is computed
over 1,000 valid materials randomly sampled from those that pass the validity test.

Results. The generated structures are shown in Figure 5 and the metrics are in Table 2. Our model
achieves a higher validity than FTCP, Cond-DFC-VAE, and P-G-SchNet, while G-SchNet achieves a
similar validity as ours. The lower structural validity in P-G-SchNet than G-SchNet is likely due to
the difficulty of avoiding atom collisions during the autoregressive generation inside a finite periodic
box. On the contrary, our G-SchNet baseline constructs the lattice box after the 3D positions of all
atoms are generated, and the construction explicitly avoids introducing invalidity. Furthermore, our
model also achieves higher COV-R and COV-P than all other models, except in MP-20 our COV-P is
similar to G-SchNet and P-G-SchNet. These results indicate that our model generates both diverse
(COV-R) and high quality (COV-P) materials. Finally, our model also significantly outperforms all
other models in the property statistics of density and energy, further confirming the high quality of
generated materials. We observe that our method tends to generate more elements in a material than
ground truth, which explains the lower performance in the statistics of # of elems. than G-SchNet.
We hypothesize this is due to the non-Gaussian statistical structure of ground truth materials, and
using a more complex prior, e.g., a flow-model-transformed Gaussian [16], might resolve this issue.

4.3 Property optimization

Setup. The third task is to generate materials that optimize a specific property, with detailed methods
in Appendix G.3. For all methods, we generate 100 materials following the protocol above. We use
the independent property predictor to predict the properties for evaluation. We report the success
rate (SR) as the percentage of materials achieving 5, 10, and 15 percentiles of the target property
distribution. Our task is to minimize formation energy per atom for all 3 datasets.

Results. The performance is shown in Table 3. We significantly outperform FTCP, while having a
similar performance as Cond-DFC-VAE in Perov-5 (Cond-DFC-VAE cannot work for Carbon-24
and MP-20). Both G-SchNet and P-G-SchNet are incapable of property optimization 5. We note
that all models perform poorly on the Carbon-24 dataset, which might be explained by the complex
and diverse 3D structures of carbon.

5Very recently the authors published an improved version for conditional generation [17] but the code has
not been released yet.
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5 Broader Impact

The ability to generate novel, stable materials has the potential to accelerate the discovery of materials
and become a valuable tool for tackling societal challenges like climate change. The potential
negative effects include the possibility of disrupting existing industries and the method being used for
producing harmful materials.
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We curated 3 datasets including Perov-5, Carbon-24, and MP-20 from public available
data. We are still in the process of making them available.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] The original data is public available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Dataset curation

A.1 Perov-5

Perovskite is a class of materials that share a similar structure and have the general chemical formula
ABX3. The ideal perovskites have a cubic structure, where the site A atom sits at a corner position, the
site B atom sits at a body centered position and site X atoms sit at face centered positions. Perovskite
materials are known for their wide applications and we curate the Perov-5 dataset from an open
database that was originally developed for water splitting [9, 10].

All 18928 materials in the original database are included. In the database, A, B can be any non-
radioactive metals and X can be one or several elements from O, N, S, and F. Note that there can be
multiple different X atoms in the same material. All materials in Perov-5 are relaxed using density
functional theory (DFT), and their relaxed structure can deviate significantly from the ideal structures.
A significant portion of the materials are not thermodynamically stable, i.e. they will decompose
nearby phases and cannot be synthesized.

A.2 Carbon-24

Carbon-24 includes various carbon structures obtained via ab initio random structure searching
(AIRSS) [18, 19] performed at 10 GPa.

The original dataset includes 101529 carbon structures, and we selected the 10% of the carbon
structure with the lowest energy per atom to create Carbon-24. All 10153 structures in Carbon-
24 are relaxed using DFT. The most stable structure is diamond at 10 GPa. All rest structures
are thermodynamically unstable but may be kinetically stable. Most of the structures cannot be
synthesized.

The dataset is licensed under Attribution 4.0 International according to the original authors [11].

A.3 MP-20

MP-20 includes almost all experimentally stable materials from the Materials Project [12] with unit
cells including at most 20 atoms. We only include materials that are originally from ICSD [2] to
ensure the experimental stability, and these materials represent the majority of experimentally known
materials with at most 20 atoms in unit cells.

To ensure stability, we only select materials with energy above the hull smaller than 0.08 eV/atom
and formation energy smaller than 2 eV/atom, following [8]. Differing from [8], we do not constrain
the number of unique elements per material. All materials in MP-20 are relaxed using DFT. Most
materials are thermodynamcially stable and have been synthesized.

The dataset is licensed under Attribution 4.0 International according to the original authors [12].

B Multi-graph representation for materials

Materials can be represented as a directed multi-graph G = {V, E} to encode the periodic structures
following [4, 20, 21], where V = {v1, ..., vN} is the set of nodes representing atoms and E =
{eij,(k1,k2,k3)|i, j ∈ {1, ..., N}, k1, k2, k3 ∈ Z} is the set of edges representing bonds. eij,(k1,k2,k3)
denotes a directed edge from node i at the original unit cell to node j at the cell translated by
k1l1 + k2l2 + k3l3 (in Figure 1, (k1, k2, k3) are labeled on top of edges). For materials, there is no
unique way to define edges (bonds) and the edges are often computed using k-nearest neighbor (KNN)
approaches under periodicity, or using more advanced methods such as CrystalNN [22]. Given this
directed multi-graph, popular message-passing neural networks and SE(3)-equivariant networks can
be used for the representation learning of materials.

C Invariances for materials.

The structure of materials do not change under several invariances. 1) Permutation invariance.
Exchanging the indices of any pair of atoms will not change the material. 2) Translation invariance.
Translating the atom coordinates X by an arbitrary vector will not change the material. 3) Rotation
invariance. Rotating the atom coordinates X and L together by an arbitrary rotation matrix will not
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change the material. 4) Periodic invariance. There are infinite different ways of choosing unit cells
with different shapes and sizes, for example obtaining a bigger unit cell as an integer multiplier of a
smaller unit cell using integer translations. The material will again not change given different choice
of unit cells.

D Detailed Methods

D.1 Periodic material encoder.

PGNNENC(M) encodes a material M as a latent representation z ∈ RD following the reparame-
terization trick in VAE [5]. We use a SE(3) invariant periodic graph neural network to encode the
material using its multi-graph representation (refer to Appendix B).

D.2 Prediction of aggregated properties.

MLPAGG(z) predicts 3 aggregated properties of the encoded material from its latent representation z.
It is parameterized by 3 separate multilayer perceptrons (MLPs). 1) Composition c ∈ R|A| is predicted
by minimizing the cross entropy between the ground truth composition and predicted composition,
i.e. −

∑
i pi log ci. 2) Lattice L ∈ R3×3 is reduced to 6 unique, rotation invariant parameters with

the Niggli algorithm [23], i.e., the lengths of the 3 lattice vectors, the angles between them, and the
values are predicted with an MLP after being normalized to the same scale (Appendix F.1) with an
L2 loss. 3) Number of atoms N ∈ {1, 2, ...} is predicted with a softmax classification loss from the
set of possible number of atoms. LAGG is a weighted sum of the above 3 losses.

D.3 Conditional score matching decoder.

PGNNDEC(M̃ |z) is a PGNN that inputs a noisy material M̃ with type noises σA, coordinate
noises σX , as well as a latent z, and outputs 1) a score sX(M̃ |z;σA, σX) ∈ RN×3 to denoise the
coordinate for each atom towards its ground truth value, and 2) a probability distribution of the true
atom types pA(M̃ |z;σA, σX) ∈ RN×|A|. We use a SE(3) graph network to ensure the equivariance
of sX with respect to the rotation of M̃ . To obtain the noisy structures M̃ , we sample σA and
σX from two geometric sequences of the same length: {σA,j}Lj=1, {σX,j}Lj=1, and add the noises
with the following methods. For type noises, we use the type distribution defined by the predicted
composition c to linearly perturb true type distribution Ã ∼ ( 1

1+σA
pA+ σA

1+σA
pc) , where pA,ij = 1

if atom i has the true atom type j and pA,ij = 0 for all other js, and pc is the predicted composition.
For coordinate noises, we add Gaussian noises to the true coordinates X̃ ∼ N (X, σ2

XI).

PGNNDEC(M̃ |z) is parameterized by a SE(3) PGNN that inputs a multi-graph representation (??) of
the noisy material structure and the latent representation. The node embedding for node i is obtained
by the concatenation of the element embedding of ãi and the latent representation z, followed by
a MLP, h0

i = MLP(ea(ãi) ‖ z), where ‖ denotes concatenation of two vectors and ea is a learned
embedding for elements. After K message-passing layers, the PGNN outputs a vector per node that is
equivariant to the rotation of M̃ . These vectors are used to predict the scores, and we follow [6, 24] to
parameterize the score network with noise scaling: sX(M̃ |z;σA, σX) = sX(M̃ |z)/σX . The node
representations hKi are used to predict the distribution of true atom types, and the type predictor is
the same at all noise levels: pA(M̃ |z;σA, σX) = pA(M̃ |z), pA(M̃ |z)i = softmax(MLP(hKi )).

D.4 Periodicity influences denoising target.

Due to periodicity, a specific atom i may move out of the unit cell defined by L when the noise
is sufficiently large. This leads to two different ways to define the scores for node i. 1) Ignore
periodicity and define the target score as xi− x̃i; or 2) Define the target score as the shortest possible
displacement between xi and x̃i considering periodicity, i.e. dmin(xi, x̃i) = mink1,k2,k3(xi − x̃i +

k1l1 + k2l2 + k3l3). We choose 2) because the scores are the same given two different X̃ that are
periodically equivalent, which is mathematically grounded for periodic structures, and empirically
results in much more stable training.
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The training loss for the decoder LDEC can be written as,

1

2L

L∑
j=1

[
Eqdata(M)

EqσA,j ,σX,j
(M̃|M)

(∥∥∥sX(M̃ |z)− dmin(X, X̃)

σX,j

∥∥∥2
2
+

λa

σA,j
La(pA(M̃ |z),pA)

)]
,

(2)
where λa denotes a coefficient for balancing the coordinate and type losses, La denotes the cross
entropy loss over atom types, pA denotes the true atom type distribution. Note that to simplify the
equation, we follow the loss coefficients in [6] for different σX,j and σA,j and factor them into
Equation 2.

Algorithm 1 Material Generation via Annealed Langevin Dynamics
1: Input: latent representation z, type and coordinate noise levels {σA}, {σX}, step size ε, number

of sampling steps T
2: Predict aggregated properties c,L, N from z.
3: Uniformly initialize X0 within the unit cell by L.
4: Randomly initialize A0 with c.
5: for j ← 1 to L do
6: αj ← ε · σ2

X,j/σ
2
X,L

7: for t← 1 to T do
8: sX,t ← sX(At−1,Xt−1,L|z;σA,j , σX,j)
9: pA,t ← pA(At−1,Xt−1,L|z;σA,j , σX,j)

10: Draw Xε
t ∼ N (0, I)

11: X ′t ←Xt−1 + αjsX,t +
√
2αiX

ε
t

12: Xt ← back_to_cell(X ′t,L)
13: At = argmaxpA,t

14: X0 ←XT ,A0 ← AT

D.5 Material generation with Langevin dynamics.

After training the model, we can generate the periodic structure of material given a latent represen-
tation z. First, we use z to predict the aggregated properties: 1) composition c, 2) lattice L, and
3) the number of atoms N . Then, we randomly initialize an initial periodic structure (A0,X0,L)
with the aggregated properties and perform an annealed Langevin dynamics [6] using the decoder,
simultaneously updating the atom types and coordinates. During the coordinate update, we map
the coordinates back to the unit cell at each step if atoms move out of the cell. The algorithm is
summarized in Algorithm 1.

E Connection between the gradient field and a harmonic force field.

The gradient field sX(M̃ |z) is used to update atom coordinates in Langevin dynamics via the force
term, αjsX,t. Below, we show that αjsX,t is mathematically equivalent to6 a harmonic force field
F (X̃) = −k(X̃ −X) when the noises are small, where X is the equilibrium position of the atoms
and k is a force constant. Harmonic force field, i.e. spring-like force field, is a simple yet general
physical model that approximates the forces on atoms when they are close to their equilibrium
locations. This indicates that our learned gradient field utilizes the harmonic approximation to
approximate QM forces without any explicit force data and generates stable materials with this
physically motivated inductive bias.

To prove the above statement, we assume the loss in Equation 2 can be minimized to zero when the
noises are small, meaning that

sX(Ã, X̃,L|z) = dmin(X, X̃)

σX,j
,∀j > J, (3)

where σX,j ∈ {σX,j}Lj=1 and any noise smaller than σX,J is considered as small.

6In fact, this is also true for the original formulation of NCSN [6]
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The force term in the Langevin dynamics αjsX,t can then be written as

αjsX(Ã, X̃,L|z;σA,j , σX,j) = ε · σ2
X,j/σ

2
X,L · sX(Ã, X̃,L|z)/σX,j (4)

= ε ·
σ2
X,j

σ2
X,L

· dmin(X, X̃)

σ2
X,j

,∀j > J (5)

= − ε

σ2
X,L

dmin(X̃,X),∀j > J (6)

If we write ε/σ2
X,L = k, then,

αjsX(Ã, X̃,L|z;σA,j , σX,j) = −kdmin(X̃,X),∀j > J (7)

If the noises are small enough that atoms do not cross the periodic boundaries, then we have
dmin(X, X̃) = X − X̃ . Therefore,

αjsX(Ã, X̃,L|z;σA,j , σX,j) = −k(X̃ −X),∀j > J. (8)

F Implementation details

F.1 Prediction of lattice parameters

There are infinitely many different ways of choosing the lattice for the same material. We compute
the Niggli reduced lattice [23] with pymatgen [25], which is a unique lattice for any given material.
Since the lattice matrix L is not rotation invariant, we instead predict the 6 lattice parameters, i.e.
the lengths of the 3 lattice vectors and the angles between them. We normalize the lengths of lattice
vectors with 3

√
N , whereN is the number of atoms, to ensure that the lengths for materials of different

sizes are at the same scale.

F.2 Multi-graph construction

For the encoder, we use CrystalNN [22] to determine edges between atoms and build a multi-graph
representation. For the decoder, since it inputs a noisy structure generated on the fly, the multi-graph
must also be built on the fly for both training and generation, and CrystalNN is too slow for that
purpose. We use a KNN algorithm that considers periodicity to build the decoder graph where
K = 20 in all of our experiments.

F.3 GNN architecture

We use DimeNet++ adapted for periodicity [26, 27] as the encoder, which is SE(3) invariant to the
input structure. The decoder needs to output an vector per node that is SE(3) equivariant to the
input structure. We use GemNet-dQ [28] as the decoder. We used implementations from the Open
Catalysis Project (OCP) [29], but we reduced the size of hidden dimensions to 128 for faster training.
The encoder has 2.2 million parameters and the decoder has 2.3 million parameters.

G Evaluation metrics

G.1 Reconstruction

We use StructureMatcher from pymatgen [25], which finds the best match between two structures
considering all invariances of materials. The match rate is the percentage of materials satisfying
the criteria stol=0.5, angle_tol=10, ltol=0.3. The RMSE is averaged over all matched
materials. Because the inter-atomic distances can vary significantly for different materials, the RMSE
is normalized by 3

√
V/N , roughly the average atom radius per material.

G.2 Generation

Validity. Following [7], a structure is valid as long as the shortest distance between any pair of atoms
is larger than 0.5Å, which is a relative weak criterion. The composition is valid if the overall charge
is neutral as computed by SMACT [30].
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Coverage (COV). Inspired by [31, 32], we define two coverage metrics, COV-R (Recall) and COV-P
(Precision), to measure the similarity between ensembles of generated materials and ground truth
materials in test set. Intuitively, COV-R measures the percentage of ground truth materials being
correctly predicted, and COV-P measures the percentage of predicted materials having high quality.

Property statistics. We compute the earth mover’s distance (EMD) between the property distribution
of generated materials and test materials. We use density (ρ, unit g/cm3), energy predicted by an
independent GNN (E, unit eV/atom), and number of unique elements (# elem.) as our properties.
Validity and coverage are computed over 10,000 materials randomly sampled fromN (0, 1). Property
statistics is computed over 1,000 valid materials randomly sampled from those that pass the validity
test.

G.3 Property Optimization

Following [33], we jointly train a property predictor F parameterized by an MLP to predict properties
of training materials from latent z. To optimize properties, we start with the latent representations
of testing materials and apply gradient ascent in the latent space to improve the predicted property
F (·). After applying 5000 gradient steps with step sizes of 1× 10−3, 10 materials are decoded from
the latent trajectories every 500 steps. We use an independently trained property predictor to select
the best one from the 10 decoded materials. Cond-DFC-VAE is a conditional VAE so we directly
condition on the target property, sample 10 materials, and select the best one using the property
predictor.
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Figure 3: Reconstructed structures of randomly selected materials in the test set.
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Figure 5: Structures sampled from N (0, 1) for the generation task.
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