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Abstract

Interacting particle or agent systems that display a rich variety of collection motions
are ubiquitous in science and engineering. The fundamental and challenging goals
are to infer individual interaction rules that yield collective behaviors and establish
the governing equations. In this paper, we study the data-driven discovery of
second-order interacting particle systems with distance-based interaction laws,
which are known to have the capability to reproduce a rich variety of collective
patterns. We propose a learning approach that models the latent interaction function
as a Gaussian process, which can simultaneously fulfill two inference goals: one is
the nonparametric inference of interaction function with the pointwise uncertainty
quantification, and the other one is the inference of unknown parameters in the
non-collective forces of the system. We test the learning approach on Dorsogma
model and numerical results demonstrate the effectiveness.

1 Introduction

Interacting particle/agent systems are ubiquitous in science and engineering. The individual interac-
tions among agents produce a rich variety of collective motions with visually compelling patterns,
such as crystallization of particles, clustering of opinions on social events, and coordinated move-
ments of ants, fish, birds, and cars. For these interacting particle/agent systems arising from numerous
fields, it is a central subject to investigate the interaction laws and derive their governing equations.

There have been tremendous research efforts in using classical physical laws to model the collective
dynamics. A common belief in scientific research is that the complicated collective behaviors are
indeed consequences of rather simple interactions, for instances, the ones based on pairwise distances
among particles/agents. Based on these ideas, one may write down a second-order system for N
interacting particles x1, · · · ,xN in Rd as follows:

miẍi(t) = F (xi(t), ẋi(t),α) +

N∑
i′=1

1

N

[
φ(‖xi′(t)− xi(t)‖)(xi′(t)− xi(t))

]
, i = 1, · · · , N.

(1)

The form of the above governing equation is indeed derived from Newton’s second law: mi is the
mass of the agent i; ẍi is the acceleration; ẋi is the velocity; F is a parametric function of position
and velocities, modelling frictions of the particles with the environment, and the scalar parameters α
describes their strength; the interaction force is the derivative of a potential energy function depending
on pairwise distances:

U(X(t)) :=

N,N∑
i,i′=1,1

1

2N
Φ(‖xi′(t)− xi(t)‖), Φ′(r) = φ(r)r. (2)
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In other words, the interactions follow the rule of minimizing the energy function so that the particles
will converge to the steady states that are local minimizers of the energy function.

For many systems arise in biology, ecology and social science, a grand challenging task is to find φ
since there is no canonical choice. Remarkable progress has been made on qualitative analysis of (1)
[1–5], which show that the solutions to (1) can reproduce a rich variety of macroscopic patterns when
time goes to infinity, similar to those observed in practice.

In recent years, due to the rapid advancements in digital imaging and high-resolution lightweight GPS
devices, the individual trajectory datasets of interacting particle systems are becoming increasingly
available. This inspired the research of fitting trajectory data into governing equation of form (1)
for scientific discovery [6, 2, 7, 8]. However, the estimation relied heavily on the experts’ domain
knowledge: one needs to select a small parametric family and then perform recovery with calibration
by modellers. The goal is to explain the data qualitatively. Now days, machine learning methods
have achieved great empirical success in many applications such as healthcare and computer vision,
demonstrating the impressive power of extracting information from data. However, their application
in data-driven modelling of dynamical systems is still in infancy. In particular, the machine learning
literature towards the data-driven discovery of interacting particle system is still scarce.

In this paper, we consider the inverse problem and investigate whether the interaction kernel φ and α
can be accurately estimated from the trajectory data generated by the system (1) by using machine
learning methods. Our study will shed light on applying (1) for scientific discovery, by proposing a
detailed methodology and providing the physical interpretation of estimators.

Problem Statement Without loss of generality, we assume that the masses of agents are the same
and have been normalized to be 1. For the agent i, we denote its position and velocity at time t
by xi(t) ∈ Rd and vi(t) := ẋi(t) ∈ Rd. Let X(t) be the [x1(t),x2(t), · · · ,xN (t)] ∈ RdN and
V (t) = Ẋ(t) ∈ RdN be defined in the similar way. Then we can rewrite the system (1)in a compact
form:

Z(t) = F (Y (t),α) + fφ(X(t)), (3)

where Y (t) := [X(t),V (t)]
T ∈ R2dN represents the state variable for the system, Z(t) = V̇ (t),

fφ(X(t)) : RdN → RdN represents the distance based interactions governed by the interaction
kernel φ as in (1). We fix L time stamps with 0 = t1 < t2 < · · · tL = T on [0, T ] and obtain the
trajectory data {Y (tl),Zσ2(tl) : 1 ≤ l ≤ L} as one training instance, where σ2 denotes the variance
of additive Gaussian noise specified below. Furthermore, we hold the following two assumptions on
training data of M training instances:

1. The M initial conditions {Y (m)(0) : 1 ≤ m ≤M} are drawn randomly from a probability
measure µ0 = [µX0 , µ

Ẋ
0 ]T on R2dN .

2. The accelerations {Z(m)(tl) : 1 ≤ l ≤ N, 1 ≤ m ≤ M} are observed with i.i.d additive
Gaussian noise ε ∼ N (0, σ2IdN×dN ), so that the data is denoted by Z(m)

σ2 (tl).

In practical situations, there is often little information about the analytical form of the interaction
kernel φ and we may have scarce noisy observation data. It will be very helpful to consider non-
parametric inference of φ with uncertainty quantification of estimators, which quantifies the reliability
of estimators. The GPR [9–11] is a non-parametric Bayesian machine learning technique with
built-in quantification of uncertainty encoded in the posterior variances of estimators, which had
many successful applications. In this paper, We propose a learning approach based on Gaussian
process regression (GPR) to learn the interaction kernel φ and the scalar parameters α.

2 Methodology

We first model the interaction kernel function φ as a Gaussian process [9–11], namely, φ ∼
GP(0,Kθ(r, r

′)), with mean zero and covariance kernel function Kθ, depending on the hyper-
parameters θ. The Gaussian prior incorporates the prior knowledge about φ before seeing the
observational data.

Given Y = [Y (1,1), . . . ,Y (M,L)]T , it follows from Equation (3) and the properties of GPs that Z :=

[Z
(1,1)
σ2 , . . . ,Z

(M,L)
σ2 ]T follows a multivariate Gaussian distribution with the mean vector F vα(Y) =
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Vec((F vα(Y (m,l)))M,L
m=1,l=1) ∈ RdNML, and the covariance matrix (Kfφ(X,X; θ) + σ2IdNML)),

where Kfφ(X,X; θ) =
(
Cov(fφ(X(i,j)), fφ(X(i′,j′)))

)M,M,L,L

i,i′,j,j′=1,1,1,1
with (i, j)th block computed

by

Cov([fφ(X)]i, [fφ(X ′)]j) =
1

N2

∑
k 6=i,k′ 6=j

(
Kθ(r

x
ik, r

x′

jk′)r
x
ikr

x′

jk′
T )
, (4)

where rxik := ‖rxik‖ := ‖X(t)k −X(t)i‖.
Then we train the hyper-parameters α and θ by maximizing the probability of the observational data,
which is equivalent to minimize the negative log marginal likelihood (see Chapter 4 in [9])

− logP (Z|Y,α, θ, σ2) =
1

2
(Z− F vα(Y))T (Kfφ(X,X; θ) + σ2I)−1(Z− F vα(Y))

+
1

2
log |Kfφ(X,X; θ) + σ2I|+ dNML

2
log 2π. (5)

To solve for the hyper-parameters (α, θ), we can apply a gradient based method, Quasi-Newton
optimizer L-BFGS [12], to minimize the negative log marginal likelihood. The marginal likelihood
induces an automatic trade-off between data-fit and model complexity [13]. This flexible training
procedure distinguishes Gaussian process from other kernel-based methods [14–16] and regularization
based approaches [17–19].

After the training procedure, we obtain updated priors on the interaction kernel functions. We show
how to predict the value φ(r∗) using the mean of its posterior distribution. Note that[

fφ(X)
φ(r∗)

]
∼ N

(
0,

[
Kfφ(X,X) Kfφ,φ(X, r∗)
Kφ,fφ(r∗,X) Kθ(r

∗, r∗)

])
, (6)

where Kfφ,φ(X, r∗) = Kφ,fφ(r∗,X)T denotes the covariance matrix between fφ(X) and φ(r∗).
Conditioning on fφ(X), we obtain that

p(φ(r∗)|Y,Z, r∗) ∼ N (φ̄∗,Var(φ∗)), (7)

where the mean and variance of the φ∗ is given by

φ̄∗ = Kφ,fφ(r∗,X)(Kfφ(X,X) + σ2I)−1(Z− F vα(Y)), (8)

Var(φ∗) = Kθ(r
∗, r∗)−Kφ,fφ(r∗,X)(Kfφ(X,X) + σ2I)−1Kfφ,φ(X, r∗). (9)

The posterior variances Var(φ∗) can be used as a good indicator for the uncertainty of the estimation
φ̂ := φ̄∗ based on our Bayesian approach. Moreover, using the estimated parameters α̂ and interaction
kernels φ̂, we can predict the dynamics based on the equations Ẑ(t) = F vα̂(Y (t)) + fφ̂(X(t)).

3 Experiments

In this section, we report the empirical performance of our proposed approach with the Matérn
covariance function in Dorsogma model [1, 5, 20], which describes the motion of N self-propelled
particles powered by biological or mechanical motors, with F (xi, ẋi,α) = (γ − β|ẋi|2)ẋi and
φ(r) =

[
−e−2r + e−

r
4

]
/r, which is an instance of Morse potential. It is shown in [1, 20] that such

system can produce a rich variety of dynamics such as double/single milling, swarming and ring.

The system studied in our experiment is a 10-agent system with mi = 1 for all i, α = (γ, β) =
(1.5, 0.5) at the time interval t ∈ [0, 5], and we test our method on both noise free data and noisy
data with the noise level σ = 0.05, 0.1. For each training instance, we generate the random initial
condition x(0) from [−0.5, 0.5]2 uniformly and set v(0) = 0. Fix M = 3 and L = 3. The training
data has M instances with L timestamps even spaced over the time interval [0, 5], while the test data
is determined by another randomly generated M initial conditions.

We obtained the estimators for the hyper-parameters from our learning approach and summarize the
results of each model in Table 1. And in Figure 1, we show the comparison between the learned
kernel and the true kernel, and their corresponding predictions for the model with σ = 0.1.

3



Table 1: Means and standard deviations of estimations for parameters σ and α, and predicted
errors for φ on [0, 1.76] in fishing milling dynamics with noise free data (σ = 0) and noisy data
(σ = 0.05, 0.1) when M = 3, L = 3

Models σ = 0 σ = 0.05 σ = 0.1

σ̂ NA 0.0495± 2.8 · 10−3 0.0991± 5.6 · 10−3

γ̂ (true γ = 1.5) 1.4998± 1.7 · 10−4 1.5030± 1.3 · 10−2 1.5057± 2.7 · 10−2

β̂ (ture β = 0.5) 0.4999± 7.3 · 10−5 0.5019± 5.6 · 10−3 0.5036± 1.1 · 10−2

Relative L∞-error of φ̂ 2.5 · 10−2 ± 3.4 · 10−3 4.1 · 10−2 ± 1.7 · 10−2 6.5 · 10−2 ± 3.2 · 10−2

Errors on predictions
for training X on [0, 5] 1.4 · 10−2 ± 9.1 · 10−3 1.3 · 10−1 ± 4.3 · 10−2 2.6 · 10−1 ± 1.0 · 10−1

Errors on predictions
for training X on [5, 10] 4.4 · 10−2 ± 3.5 · 10−2 3.4 · 10−1 ± 1.8 · 10−1 7.0 · 10−1 ± 3.7 · 10−1

Errors on predictions
for testing X on [0, 5] 1.3 · 10−2 ± 9.4 · 10−3 1.2 · 10−1 ± 4.6 · 10−2 2.2 · 10−1 ± 1.1 · 10−1

Errors on predictions
for testing X on [5, 10] 4.8 · 10−2 ± 3.2 · 10−2 3.2 · 10−1 ± 1.1 · 10−1 5.8 · 10−1 ± 2.4 · 10−1

(a) learned kernel vs true kernel (b) trajectory prediction

Figure 1: Learning a fishing milling system (dim=20) using the Matérn kernel with noisy data,
σ = 0.1. (a): predictive mean φ̂mean of the true kernel φ, and two-standard-deviation band (light blue
color) around the mean. The grey bars represent the empirical density of pairwise distances of agents
(computed from training data), on which φ is being learned. Our estimator enjoys extrapolation
property outside its support. (b): the trajectory using true α and φ (left) versus prediction using α̂
and φ̂mean (right) for two sets of initial conditions.

Discussion In all cases, the estimation error for α are very small (at most O(10−2)), and our
estimators can produce faithful approximations to the true kernel for both noise free and noisy data as
shown in Figure 1 (a). The uncertainty region in the area covered by the density of pairwise distance
(see grey bar in Figure 1 (a)) is very small. When noise increased, the error around r = 0 is slightly
larger, which is due to the fact that φ(r) is weighted by ~r in the model (1)(so the information of φ(0)
is lost) and the area near 0 is not in the support of density of pairwise distance. Therefore, we need
more data in the noisy case so that the pairwise distance can cover the part near 0. However, the
true interaction kernel φ(r) is fully covered in the compact uncertainty region which we constructed
using the posterior variances. The trajectory prediction errors can go up to O(10−1) for few agents
with the presence of a relatively large noise, but our estimators provided faithful predictions to most
of the agents in the system, and the milling pattern as shown in Figure 1 (b). We also test our
approach on other systems that exhibit clustering and flocking behaviour and the results demonstrate
the effectiveness.

Baseline comparisons We perform comparisons with approaches that learn the right handside
function of (3) directly from trajectory data: the first one is SINDy [21], which aims at finding a
sparse representation for each row of governing equations in a (typically large) dictionary; the second
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one is regression using the feed forward neural networks, for which we use the MATLAB® 2021a
Deep Learning Toolbox™. To evaluate the performance, we compare the trajectory prediction errors
of the estimators for a 5-agent system with same parameters and {M,L, σ} = {1, 9, 0.1}.

(a) True versus Our Model in FM dynamics (b) Comparison with SINDy and FNN in FM dy-
namics

Figure 2: Learning FM dynamics from training data {N,M,L, σ} = {5, 1, 9, 0.1}. The true
trajectory versus the prediction from our GP model (left), the SINDy model and the FNN model
trajectories (right).

Baseline comparison tests illustrate the importance of exploiting the structure of the governing
equation. SINDy treats each row individually and did not take the nonlocal interaction structure into
account. FNN treats the right hand side function of governing equation as a high dimensional vector
valued function. We see in the Figure 2 that our approach has the best performance with the limited
training data. The specific errors are summarized in Table 2.

Table 2: Baseline comparison. The relative trajectory prediction errors.

Approach Training time interval [0, 5] Future time interval [5, 10]

GPs 3.6 · 10−3 ± 2.5 · 10−3 2.4 · 10−1 ± 3.1 · 10−1

SINDy 9.4 · 10−1 ± 3.8 · 10−1 1.2 · 100 ± 4.7 · 10−1

FNN 2.2 · 100 ± 1.3 · 100 3.1 · 100 ± 1.7 · 100

4 Future work

In our ongoing work, we connect our learning problem with the statistical inverse problem and
provide a systematic learning theory to provide a quantitative analysis of the estimators. Another
directions include the improvement of the computational efficiency of the current approach to deal
with abundant trajectory data, since a well-known computational limitation of GPs is that inverting
dense covariance matrices scales cubically with the number of training data.
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