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Abstract

Constructing probability densities for inference in high-dimensional spectral data
is often intractable. In this work, we use normalizing flows on structured spectral
latent spaces to estimate such densities, enabling downstream inference tasks. In
addition, we evaluate a method for uncertainty quantification when predicting
unobserved state vectors associated with each spectrum. We demonstrate the
capability of this approach on laser-induced breakdown spectroscopy data collected
by the ChemCam instrument on the Mars rover Curiosity. Using our approach, we
are able to generate realistic spectral samples and to accurately predict state vectors
with associated well-calibrated uncertainties. We anticipate that this methodology
will enable efficient probabilistic modeling of spectral data, leading to potential
advances in several areas, including out-of-distribution detection and sensitivity
analysis.

1 Introduction

The ChemCam instrument on the Mars rover Curiosity uses laser-induced breakdown spectroscopy
(LIBS), a type of an atomic emission spectroscopy, to remotely analyze Martian rocks (Wiens
et al.,[2012). Spectral information is used to extract the qualitative and quantitative chemical content
(QQCC) of a material sample, where the QQCC can be seen as an unobserved state vector representing
the sample. Both linear and nonlinear supervised learning techniques have been applied for mapping
LIBS spectra to QQCC with good accuracy (Forni et al.| [2013; Boucher et al.,|2015j |Castorena et al.,
2021). In this work, we build upon these efforts by proposing a framework for constructing the
probability density function (PDF) of LIBS spectra. In addition, unlike previous methods which
produce point estimates of QQCC, we propose and evaluate a method for uncertainty quantification
(UQ) on point predictions of QQCC.

Many real-world spectra, including LIBS spectra, are characterized by a large number of features,
complicating the construction of the data PDF due to the curse of dimensionality. We develop a novel
framework for constructing low-dimensional PDFs suitable for downstream inference (e.g., sampling,
density estimation, outlier detection, or unsupervised representation learning) using state-of-the-art
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neural density estimators with normalizing flows (NF) on spectral latent spaces. This framework
allows us to generate realistic spectral samples on a reduced space and using an inverse-transformation
project them back to the physically interpretable space. Furthermore, we propose a bootstrapping
approach for quantifying uncertainty in predictions of unobserved state vectors corresponding to
each spectrum. We demonstrate the capabilities of the proposed approach to construct the PDF of a
LIBS spectral data set, and to learn a mapping to the known QQCC with uncertainty. The validated
framework can be then employed for QQCC prediction and direct UQ of novel samples, such as
artificial samples generated by the NF model as well as spectra collected directly on Mars.

To the best of our knowledge, this work is the first time normalizing flows are constructed on spectral
latent spaces and can be readily employed for any kind of spectroscopy data. We show that the
proposed framework provides a straightforward way to perform downstream inference tasks and direct
UQ for high-dimensional spectral data. Codes can be found at https://github.com/katiana22/
ug4chemcam.

2 Methods

2.1 Problem statement

Let’s assume y € RM is an M —dimensional random vector with non-negative elements, and a true
data distribution py-, which represents the spectral signals. Our goal is to learn an invertible, stable
mapping between the approximate data distribution py- and a latent distribution p (e.g., Gaussian)
that will allow for fast evaluation of various inference tasks. However, estimating the full-joint density
of very high-dimensional spectra is a challenging and often intractable task. Therefore, we introduce
a second mapping, that transforms y € RM to x € R where L < M to discover the spectral latent
representation of the signals. Next, we learn an invertible mapping between x ~ px (spectral latent
variable) and z ~ pz (latent variable). This framework allows us to generate novel samples on the
reduced spectral latent space x ~ px and use the inverse transformation to map back to the original
space R — RM and therefore approximate the true data distribution.

We also want to estimate an unobserved state vector v € R where C is the vector dimensionality.
For the ChemCam application we consider, this represents the QQCC, an 8-dimensional vector with
the relative weight percentages of 8 major oxides commonly found on Mars. Given a training dataset
of LIBS spectra y € RM and associated compositions v € R (samples generated on Earth), we
are interested in constructing a surrogate of the mapping f : R — R, that will allow us to make
predictions of the chemical concentration of novel samples. To calculate uncertainties related to these
predictions, we propose an approach based on bootstrapping that allows us to quantify both model
and data uncertainties and thus assign measures of accuracy to sample estimates. This approach can
be then employed for UQ of data generated by the normalizing flow model.

2.2 Spectral NMF latent space

Consider N observations of the random vector y € RM and let the data matrix be Y =
[y1,¥2,-»yn|L € RgOXM . We use non-negative matrix factorization (NMF) to decompose Y
into a product of a non-negative basis matrix X € RQOXL and a non-negative coefficient matrix

Ve RééM , such that Y ~ XV (or equivalently y; ~ Z{;l x;Vi;) (Paatero and Tapper, |1994;
Wang and Zhang| |2012)). NMF decomposes each data point into the linear combination of the basis
vectors. The NMF optimization problem consists of minimizing the Frobenius norm between Y and
XV.

NMF is appropriate for non-negative data and a powerful method for feature selection; and thus allows
us to ignore the non-informative LIBS dimensions and enable interpretability of results (Rammelkamp
et al.,[2020).
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2.3 Inference via a spectral normalizing flow

We propose the construction of a normalizing flow model on the latent space of the LIBS spectra,
obtained by the NMF decomposition, to learn the underlying probability distribution of the spectral
latent variable x € R, The inverse NMF mapping introduced in the previous section can be used to
project generated samples back to the physically interpretable space (i.e., R — RM),

Normalizing flows are a powerful class of likelihood generative models which transform a base
density into a target density by a series of deterministic and invertible transformations (Kobyzev et al.,
2020). Consider the base density pz(z) (spectral latent variable), the more complex density px (x)
(latent variable) and an invertible mapping x = f(z). Under the change of variables formula we can
compute the log-likelihood of x as

(D

oxT

where 6 represents the trainable parameters of the flow. To train the NF model the negative log-
likelihood (NLL) of Eq.(I) is minimized.

log(px (x|0)) = log(pz(2|0)) + log ’ det <8f(x|9)) ‘

Here, we parameterize the normalizing flow with a sequence of real-valued non-volume preserving
(RealNVP) transformations (Dinh et al., 2016). The RealNVP model, composes two types of
invertible transformations: additive coupling layers and rescaling. The model uses the so-called
affine coupling layers for the coupling flows, which are simple and computationally efficient. The
transformation can be written as

X1:d = Z1:d

Xd+1:D = Z4+1:D O] exp(fa(zl:d)> + fp,(zl:d)a

2

where @ is the Hadamard product or element-wise product and the exp(-) is applied to each element
of a. The above transformation performs a ‘1-1” mapping to the first d elements and scales and shifts
the remaining D — d. By incorporating coupling layers into the flow, the elements are permuted
across layers so that a different set of elements is copied each time. Here we model f,, f,, as neural
networks. Once the PDF is learned, downstream inference tasks can be performed straightforwardly.
In the next Section, we are interested in predicting the elemental composition of novel samples, with
their associated uncertainty.

2.4 Uncertainty quantification via bootsrapping

We now aim to construct a mapping between the LIBS signal signatures and QQCC. We train shallow
neural networks, one for each oxide element. The models are formed as

v =o(wTz® +0), i=1,.,t 3)

where ¢ is the total number of oxides to be determined, w, b denote the trainable weights and bias and
o is the activation function. We learn the parameters of the models with a training set { (s, v;)} Y ;,
where NV is the total number of samples. The main advantage of such models is that they are both fast
to train and result in very good accuracy scores (see Results).

To quantify uncertainties related to predictions of elemental compositions we use bootstrapping
(Kumar and Srivastaval, |[2012), a statistics resampling method which allow us to assign measures of
accuracy to a sample estimate. In general, bootstrapping performs as well as parametric prediction
intervals and its implementation is straightforward. For our application, it does not result in high-
computational cost given the choice of simplistic bootstrapped shallow neural networks. In case of
more complex models, methods that leverage the last-layer of the network can be employed as they
have shown good performance (Brosse et al., [2020). Given a new observation yy € RM | we can
write

vo = U (y0) +7(¥0) “4)
where ©,,(yo) represents the model estimate at the n-th bootstrap iteration (model uncertainty) and
r(yo) the predicted residual between true and predicted values which can been modeled for a training
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Figure 2: Regression results of the composition of each of the 8 major oxides for a holdout set of
140 samples. Accuracy is measured with the coefficient of determination (R score) and x,y axes
represent the true and predicted oxide wt.% respectively.

Table 1: Coverage results for 95% confidence intervals and 140 validation samples.

oxide SIOQ TiOQ A1203 FGOT MgO CaO NaQO KQO
coverage (%) | 84.89 | 98.56 | 86.33 | 86.33 | 86.33 | 96.40 | 93.53 | 89.93

dataset with a regression model (data uncertainty). To measure the quality of prediction intervals, we
compute the coverage of validation samples (the rate at which the actual values fall within the range
of the prediction interval). A summary of the proposed approach is presented in Algorithm [I]

Algorithm 1 Proposed methodology

Require: Input spectray € RM | state vectors v € R, embedding dimension L
Ensure: y >0
Perform NMF y; ~ Ele x;V;;, and obtain data on the latent space, x € RX
Construct density of latent variable px (x) with RealNVP
for i=1,t do
Train a shallow NN as v(9) = g(w”2(® + b) > Map reduced spectra to state vectors
end for
Given a new observation yg € RM, prediction is v = 0, (yo) + 7(y0), n : bootstrap iteration
Compute coverage to evaluate the confidence intervals

3 Results

Consider Y € RY*M the LIBS spectra matrix with N = 426 and
M = 5606. We perform NMF using L = 15 (selected by 5-fold
cross-validation) with transformed data matrix X € R™V*Z. Next we
construct a NF model based on the RealNVP architecture with 5 cou- v

pling layers and a Gaussian distribution as a base density (Kostrikov ¥
(2019)). We should highlight here the computational advantages e 250 i 6‘00“‘*““ o
of this approach. Constructing a NF model on the 15-dimensional wavelength (nm)
latent space is extremely fast as the training process required less
than 1 minute of CPU time. In Figure[I] we show a novel random
sample generated by the NF model which is transformed back to the
original space with inverse NMF.
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Figure 1: Random sample gen-
erated by the normalizing flow
model and transformed to the
We consider 8 oxides and therefore we construct ¢ = 8, single hidden original space.

layer neural network models, with ReLU activation function, trained

with stochastic gradient descent (SGD). To measure the accuracy of results we compute the coefficient



of determination, calculated as RZ = 1 — %, where RSS represents the sum of squares of residuals
and TSS the total sum of squares. We show the accuracy of models in Figure 2] for a holdout set of
140 samples. The results reported show that point estimates are close to the optimal regression (1:1
line) and overall the response is comparable to state-of-the-art deep CNN approaches (Castorena
et al., [2021)). For TiO5 and K5O elements, estimates show larger deviation, which are not considered

significant due to the small oxide wt.% values at these regions.

Finally, we perform bootstrapping for a dataset of LIBS
spectra samples collected on Earth (with associated ground
truth) and we compute the prediction intervals for the same
holdout dataset of 140 samples. In Figure[3] we plot the
distribution of bootstrap predictions with the ground truth
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for a random Earth sample where box plots represent the CO E3) E% : %
first quartile to the third quartile and green stars are the of & 4 T @ Ll % &
ground truth. Table [T|shows the coverage calculated for 502 TIOZ A203 FeOT, IO €20 Na20 K20

95% prediction intervals for all holdout samples, and we

see that the intervals appear to nearly achieve the nominal

coverage. The validated approach can be therefore used Figure 3: Bootstrap results for a random
for making predictions with uncertainty for novel LIBS ~Sample.

spectra, generated either by the normalizing flow model

or for Martian samples directly collected from ChemCam.

4 Conclusions

We showed that the proposed framework provides a straightforward way to perform downstream
inference tasks for high-dimensional spectral data by identifying a spectral latent space, estimated as
a parsimonious representation of the data, and constructing a spectral normalizing flow model on
the reduced space. The proposed approach is ideal for modeling high-dimensional data and enables
the learning of complex distributions in a fast and efficient way. Beyond general high-dimensional
inference, the proposed UQ approach allows for predictions of state vectors associated with novel
out-of-distribution data or data generated by the trained normalizing flow. We believe that this work
does not have future societal or ethical consequences.
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* Did you describe the limitations of your work?: The main limitation of this work is related to
the high computational cost of the bootstrapping method in cases of complex neural network
models. We mention this limitation and also propose an alternative solution in Section 2.4}

* Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)?: Yes



* Did you specify all the training details (e.g., data splits, hyperparameters, how they were
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