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Abstract

In this study, a novel physics-informed neural network (PINN) is proposed to allow
efficient training with improved accuracy. PINNs typically constrain their training
loss function with differential equations to ensure outputs obey underlying physics.
These differential operators are typically computed via automatic differentiation
(AD), but this can fail with insufficient collocation points. Hence, the idea of
coupling both AD and numerical differentiation (ND) is employed. The proposed
coupled-automatic-numerical differentiation scheme (can-PINN) strongly links
collocation points, thus enabling efficient training while being more accurate than
simply using ND. As a demonstration, two instantiations of can-PINN were derived
for the incompressible Navier-Stokes equations and applied to modeling of lid-
driven flow in a cavity. Results show that can-PINNs can achieve very good
accuracy even when the corresponding AD-based PINN fails.

1 Introduction

Physics-informed machine learning (1), in particular physics-informed neural networks (PINNs) have
received increasing attention recently. The central idea of PINNs is to incorporate governing physical
laws, typically differential equations, into the training loss function. PINNs have been demonstrated
for various physics, including heat transfer (2; 3), fluid dynamics (4; 5; 6) and electromagnetics
(7; 8; 9), and can be extended to inverse problems (10; 11; 12; 13). There have been significant efforts
to improve PINN trainability (14; 15; 16; 17; 18; 19; 20; 21; 22). Nevertheless, training an accurate
PINN remains a challenge (19; 20).

The vast majority of recent PINNs favor the fully connected architecture (23; 24; 25), where the
computation of differential operators can be conveniently obtained via automatic differentiation (AD)
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(26). However, one can also compute these terms via numerical differentiation (ND), with very
different impact on training. In the present study, we show that PINNs utilizing AD (a-PINNs) can
only be accurately trained with sufficient collocation points. a-PINN training becomes delinked
from solution accuracy under sparse sampling scenarios, i.e., even when the training losses are small,
a-PINNs remain far away from the true solution. On the contrary, PINNs utilizing ND (n-PINNs)
are robust and efficiently approximate the right solution with much less collocation points. However,
they may be less accurate than a-PINNs given large quantities of collocation points in some cases.

This work introduces a novel coupled-automatic-numerical differentiation scheme for training PINNs
(can-PINNs) that unifies the advantages of both a-PINNs and n-PINNs. The can-PINN formulation is
generic and easily extended to various numerical schemes. To illustrate this, we present 2 versions
based on the common upwind and central difference numerical schemes and provide intuition for
their improved performance. We also demonstrate that can-PINNs robustly provide accurate solutions
in sparse sample regimes where a-PINNs fail, while being more accurate than n-PINNs and matching
the accuracy of a-PINNs in dense sample regimes when solving a lid driven flow in cavity. The
sample codes can be found on https://github.com/chiuph/CAN-PINN.

2 Methods

A detailed introduction to PINNs is provided in the Appendix for interested readers. Briefly, a typical
PINN uses a fully connected architecture to model the dynamical system u(x,t;w) given spatial x
∈ Ω and temporal t ∈ (0,T] inputs and network parameters w. Crucially, PINN training focuses on
reducing the residual from the governing differential equations over a set of collocation points within
the problem domain, thus ensuring that its output obeys underlying physics.

2.1 Issues with a-PINN and n-PINN training

While the PDE loss components are defined over a continuous domain, residuals are typically
computed over a finite set of m collocation points D = {xi, ti}mi=1. When the PINN is higher order
differentiable w.r.t. (x,t), differential operators in the PDE can be conveniently computed via AD
which is already used during training, making AD the default for PINNs.

However, PINNs are commonly trained in an over-parameterized regime. As AD computes differential
operators exactly at each individual collocation point and the AD-formulated loss function is under-
constrained when the PINN is heavily over-parameterized, insufficient collocation points make
a-PINNs susceptible to inaccurate solutions. Hence, the a-PINN may fulfill the underlying differential
equation well at all collocation points, leading to a near zero training loss, even when its solution is
different from the true solution (Figure 1a). Under such circumstances, the training loss is extremely
misleading. This is particularly critical as PINN-type methods have been proposed for complex
high-dimensional PDEs where dense sampling might be impractical (27).

Figure 1: Schematics illustrating how (a) a-PINN almost perfectly matches the differential operator
constraint at the collocation points (colored) but deviates from the true solution (black) while (b)
n-PINN and (c) can-PINN approximate the true solution (black) by matching the gradient at piecewise
local regions defined by support points surrounding the collocation points (colored).

One can employ ND in place of AD to alleviate this issue. The fundamental idea is to approximate
derivatives by means of local support points via Taylor-series expansions. The resultant derivatives
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are obtained by matching the values across local support points, thus enforcing a smooth transition
across adjacent points. This allows n-PINNs to modulate gradient behavior at piece-wise local regions
rather than isolated collocation points. As a result, n-PINNs learn the pattern in the entire solution
space even with sparsely sampled collocation points (Figure 1b), although its accuracy depends on
discretization and numerical scheme used.

2.2 can-PINN

Inspired by the multi-moment approach (28; 29; 30), we propose the coupled-automatic-numerical
(can) differentiation method to augment the accuracy of n-PINNs. The idea is to approximate the
derivative term ux|can by virtue of both u and ux, where ux is obtained from AD. To illustrate this,
we derive the following based on the conventional 2nd order upwind (uw2) and central difference
(cd) schemes:

∂u

∂x
∼=
∂u

∂x
|can(uw2) =

û(x, t)− û(x−∆x, t)

∆x
+ 1/2(ûx(x, t)− ûx(x−∆x, t)) (1)

∂p

∂x
∼=
∂p

∂x
|can(cd) =

p̂(x+ ∆x, t)− p̂(x−∆x, t)

2∆x
−1/8(p̂x(x+∆x, t)−2p̂x(x, t)+p̂x(x−∆x, t))

(2)
where the ∆x is a parameter and may be defined as the distance between adjacent points. A modified
equation analysis can be used to recast the above equations into the following forms:

∂u

∂x
|can(uw2) = ûx −

∆x2

12
ûxxx +

∆x3

24
ûxxxx + ... (3)

∂p

∂x
|can(cd) = p̂x +

∆x2

24
p̂xxx −

∆x4

480
p̂xxxxx + ... (4)

From these equations, the proposed schemes can be seen as including additional stabilization terms
to couple information from adjacent points. In addition, as the choice of local support points gets
increasingly dense, ∆x becomes vanishingly small, and the derivative is now equal to the derivative
as computed by AD, ensuring the accuracy of the can-PINN formulation. As per typical numerical
implementations, the upwind direction is defined based on the local flow field as obtained at each
training iteration.

3 Results

3.1 Description of models for flow in a lid-driven cavity

The lid-driven cavity problem is a common benchmark for many numerical methods, due to its
complex physics. This problem models flow within a square cavity with a lid velocity ulid = 1 for the
top wall, and zero velocity on other non-slip walls. The governing equations are the steady-state, 2-D
incompressible N-S equations (in Appendix). To compute MSE, a reference solution is obtained by
an in-house numerical solver based on the improved divergence-free condition compensated (IDFC)
method (31). Additional information on the PINN architecture used is in the Appendix.

3.2 Performance of a-PINN, n-PINN and can-PINN

The performance of a-PINN, n-PINN, and can-PINN for 50 independent runs when trained with 2601
collocation points sampled from a 51x51 grid are compared in terms of training loss and solution
MSE (Figure 2a). Despite the lowest training loss, the a-PINN’s solutions are consistently bad.
Their MSEs (>1e-2) are more than 1 order of magnitude higher than those obtained by n-PINN, and
are about 2 orders of magnitude higher than can-PINNs. The results also show that the proposed
can-PINNs are significantly more accurate than n-PINN. In Figure 2b, we plot the velocity profiles
along the cutting lines at the center of the cavity. Good agreement is obtained for the can-PINN with
both our in-house simulation and a literature benchmark (32). The n-PINN profiles deviate slightly
more from the simulation and benchmark, while a-PINN results show a large discrepancy. Additional
contour plots illustrating the relative performance of the PINN models are in the Appendix.
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Figure 2: (a) Distribution of training loss and velocity MSE across different PINNs from 50 indepen-
dent runs. (b) The velocity profiles along the center cutting lines, from the median solution obtained
are compared to the simulation and benchmark results from (32).

3.3 Training under different sampling scenarios

As the previous results suggest that sampling collocation points from a 51x51 grid is insufficient for
training a good a-PINN model, we further study the performance of different PINNs with collocation
points from a denser selection of points, i.e., 101x101 and 201x201 points. The distribution of
solution MSE based on 10 independent runs for different PINNs and sampling scenarios are presented
in Figure 3(a). The results show that all 3 PINN models achieve a more accurate solution when the
collocation points are sampled from a denser selection. However, the a-PINN only achieves a good
solution with MSE (∼2e-4) on the finest resolution of 201x201. Even then, this result is only on
par with the can-PINN on a 51x51 grid, and out-performed by can-PINN on a 201x201 grid. In
addition, this requires both double the mini-batch size and much more training iterations than the
can-PINN. Also, to ensure a fair comparison, the ∆x parameter employed for can-pinn was chosen
to be identical to the spacing used in generating the set of collocation points for each experiment,
ensuring that the introduction of the can-PINN ansatz does not provide additional training points that
the a-PINN does not see.
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Figure 3: (a) Distribution of velocity MSE between PINNs for collocation points sampled from
51x51, 101x101, and 201x201 grids. (b) Distribution of velocity MSE vs. training iteration, with
collocation points randomly sampled from uniform distribution. (c) Comparison of PINNs’ training
time (averaged from 5,000 iterations) for 500 mini-batch samples, under limited and excessive
compute resource scenarios.

The performance of different PINNs when trained on collocation points randomly sampled from a
uniform distribution is also studied. Since the collocation points are not uniformly spaced, the ∆x
parameter used in the can-PINN loss function is less well-defined. ∆x=0.01 is used for this work.
In the limit as training iteration grows, this random uniform sampling is equivalent to an infinitely
dense set of collocation points. Figure 3(b) compares the MSE at 1 and 2 million training iterations.
Again, all 3 PINNs achieve a more accurate solution after more training iterations. a-PINN performs
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better on the uniform distribution sampling given the same large amount of training iteration. On the
contrary, n-PINN and can-PINN training is consistently more efficient under the fixed grid sampling
scenario. Critically, can-PINN consistently outperforms a-PINN and n-PINN across all scenarios.
The above results indicate that PINNs generally achieve a better solution with increased sampling
resolution, albeit with more training iterations. Importantly, this increase in training iterations can be
a practical bottle-neck, especially when optimizing hyper-parameters.

Finally, we report the per iteration training time from different PINN models as used in the present
study as per Figure 3(c) for reference. The PINN implementations used the Keras API as packaged
with TensorFlow2.5. During training, n-PINN requires only forward pass for the computation of
the differential operators for loss evaluation, which can be faster than the back-propagation AD
computation utilized by a-PINN. The can-PINN however performs both forward pass and back-
propagation during the loss evaluation. Hence, with a limited compute resource (i.e., 4 CPUs per
PINN), the n-PINN is the quickest, while the can-PINN is the slowest. In addition, Keras and its
backend TensorFlow automatically parallelize execution. Hence, when there are over 20 CPUs per
PINN, the a-PINN, n-PINN, and can-PINN show similar execution times per iteration. Critically, we
note that the n-PINNs and can-PINNs are also generally more sample efficient and converge with
less total iterations than the a-PINNs, in addition to having similar execution times per iteration.

4 Conclusion

In this work, we studied the difference between PINNs with training loss computed by AD and ND.
It was observed that the AD-formulated loss function is an under-constrained optimization problem,
which causes a-PINN training to fail without adequate sampling, while the n-PINN is much more
efficient and robust to sampling resolution.

Inspired by the multi-moment approach, we further proposed a coupled-automatic-numerical differ-
entiation method that utilizes both AD and ND principles. The resultant can-PINN is much more
sample efficient and yields improved accuracy. The proposed can-PINN is a generic framework and
can be extended to many coupled-automatic-numerical schemes of varying form and accuracy. With
the application to fluid dynamic problems in mind, we derived two can-PINN schemes based on
the upwind and central difference numerical schemes, and demonstrate the ability for can-PINN to
efficiently train on sparse samples while robustly producing an accurate solution. This new method
can potentially enable the extension of PINNs to even more complex problems where conventional
a-PINN formulations might be challenging to train.
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A Appendix

A.1 Physics-Informed Neural Networks

In this section, we briefly outline the PINN methodology as commonly employed. A typical PINN
uses a fully connected architecture to predict the dynamical process u(x,t;w) given spatial x ∈ Ω
and temporal t ∈ (0,T] inputs. The PINN’s accuracy is determined by the network parameters w,
which are optimized w.r.t. during training. The system u is assumed to be described by differential
equations of the general form:

Nt[u(x, t)] +Nx[u(x, t)] = 0 x ∈ Ω, t ∈ (0, T ] (5a)
u(x, 0) = uo(x) x ∈ Ω (5b)
B[u(x, t)] = g(x, t) x ∈ ∂Ω, t ∈ (0, T ] (5c)

where Nt and Nx are general differential operators which can include any combination of linear
and non-linear temporal and spatial derivatives. The IC at t=0 is defined by uo (x). The boundary
operator, B, can be any Dirichlet, Neumann or Robin BC, and enforces the desired condition g(x,t) at
the boundary ∂Ω. The PINN training loss function is then defined as:

L = λDELDE + λICLIC + λBCLBC (6a)

LDE =
∥∥Nt[u(x, t;w)] +Nx[u(x, t;w)]

∥∥2

Ω×(0,T ]
(6b)

LIC =
∥∥u(x, 0;w)− u0

∥∥2

Ω
(6c)

LBC =
∥∥B[u(x, t;w)]− g(x, t)

∥∥2

∂Ω×(0,T ]
(6d)

which includes the PDE loss component, LDE , and the IC and BC loss components, LIC and LBC .
The relative weights, λs, control the trade-off between different components in the loss function. To
further show the reliability and efficiency, the data loss component is not included in loss function,
and all λs are set to 1 in this study.

A.2 Navier-Stokes Equations

The governing equations used in our PINN formulation are the steady-state, 2-D incompressible N-S
equations:

∂u

∂x
+
∂v

∂y
= 0 (7a)

∂(uu)

∂x
+
∂(vu)

∂y
=

1

Re
(
∂

∂x
(
∂u

∂x
) +

∂

∂y
(
∂u

∂y
))− ∂p

∂x
(7b)

∂(uv)

∂x
+
∂(vv)

∂y
=

1

Re
(
∂

∂x
(
∂v

∂x
) +

∂

∂y
(
∂v

∂y
))− ∂p

∂y
(7c)

In the above equations, the primitive variables (u,v) and p are velocity and pressure and Re is Reynolds
number. We solve for the lid driven cavity problem at Re = 400 within a unit-length spatial domain.

A.3 PINN architecture and training details

All experiments are run with the standard Tensorflow and Keras implementation on a 20-core
workstation with an Intel Xeon Gold 6248 processor and an Nvidia RTX 2080 Ti GPU. However, our
initial experiments revealed that the GPU was not significantly faster than the CPU, and all reported
experiments in this work were run on the CPU.

As per in Figure 4, the general PINN architecture and training setting used is as follows. The network
is comprised of 7 hidden layers, with the two spatial variables (x,y) expanding to 4 hidden layers
with 64, 20, 20, 20 nodes in each layer, before branching out to another set of 3 hidden layers with 20
nodes in each layer, that predict each of (u,v,p). We incorporate the sinusoidal mapping:

γ(ν) = sin(2π(Wν + b)) (8)

that act on PINNs’ 2-dimensional spatial inputs ν = [x, y]T , into the first hidden layer of PINN,
and initialize its weights W by sampling from a normal distribution N(0, σ2), σ = 1. The bias
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Figure 4: Schematic of the PINN architecture for the present study.

b is initialized as a zero vector. The subsequent hidden layers also use “sine” activation, except
for a “linear” activation function in the output layer. Their weights are initialized by He uniform
distribution. We reduce the learning rate on plateauing starting from an initial learning rate of 1e-3
until a min. learning rate of 5e-6 is reached. Each test problem was trained for 200,000 total training
iterations, and the performance of a-PINNs, n-PINNs, and can-PINNs was compared under identical
network architectures and training settings. Different activation functions were also tested in this
work. With the commonly used activation function tanh, a-PINNs optimization is still unsuccessful
while can-PINNs and n-PINNs are successful, while can-PINNs still achieves better error MSE than
n-PINNs.

In addition, it is important to consider the physical nature when approximating the different derivative
terms, hence, convective terms are frequently better approximated by upwind schemes, while pressure
gradients can be well approximated by central difference schemes. Consequently, the upwind-based
can(uw2) and can(cd) scheme, and second order upwind scheme and central difference scheme are
employed for convection and pressure gradient terms for the can-PINNs and n-PINNs respectively.
All other differential terms are approximated by a central difference scheme.

For the sake of completeness, we also plotted the residuum plot for the training grid and higher
resolution grid. From Figure 5, it reveals that high residual appears near the boundary where the
physics is more complex. Nevertheless, the solution MSE is stable even the residual MSE increases
by a few orders of magnitude.

(a) (b)

Figure 5: (a) Distribution of residuum for trained grid and higher resolution grids. (b) Contour plot of
residuum for trained grid and higher resolution grids.
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A.4 Velocity contour of results

Figure 6 compares the velocity magnitude contours computed by a-PINN, n-PINN, and can-PINN,
and their deviation from the solution. Clearly, it is difficult to obtain a reasonable solution by a-PINN
with the current 51x51 grid, i.e., the correct flow does not develop. While both the n-PINN and
can-PINN resemble the ground truth, the can-PINN is clearly more accurate.
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(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
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