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Abstract
We introduce a novel method for constructing symmetry-preserving attention net-
works which reflect the natural invariances of the jet-parton assignment prob-
lem to efficiently find assignments without evaluating all permutations. This
general approach is applicable to arbitrarily complex configurations and sig-
nificantly outperforms current methods, improving reconstruction efficiency be-
tween 19% - 35% on benchmark problems while decreasing inference time by
two to five orders of magnitude, making many important and previously in-
tractable cases tractable. A full code repository containing a general library,
the specific configurations used, and a complete dataset release, are available at
https://github.com/Alexanders101/SPANet.

1 Introduction
Reconstructing all-jet events at the Large Hadron Collider (LHC) consists of assigning specific labels
to a variable-size set of observed jets, each represented by a fixed-size vector of physical measure-
ments of the jet. Each label represents a decay product of an intermediate heavy particle and must
be uniquely assigned to one of the jets if the mass and momentum of the heavy particle is to be
measured. Current solutions consider all possible assignment permutations, an ineffective strategy
for which the combinatorial computation cost grows so rapidly with the number of jets that they are
rendered unusable in particle collisions with more than a handful of jets.

Attention-based methods have achieved state-of-the-art results in natural language processing prob-
lems such as translation [1, 2, 3, 4], where variable-length sequences are common. Transformers
[5] stand out as particularly promising for set assignment due to their fundamental invariance with
respect to the order of the input sequence [6]. Transformers are especially effective at modeling
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variable-length sets because they can learn combinatorial relationships between set elements with
polynomial run-time. We present a novel attention-based method which expands on the transformer
to tackle the unique symmetries and challenges present in LHC event reconstruction.

2 Event Reconstruction at the LHC
The detectors at the Large Hadron Collider measure particles produced in high energy proton colli-
sions. In each collision event, heavy, unstable particles such as top quarks, Higgs-bosons, or W−
& Z-bosons may be created. These resonance particles decay too quickly (< 10−20s) to be directly
detected [7]. To study them, experimentalists must reconstruct them from their decay products,
which we will refer to as partons. When these partons are quarks, they appear in the detectors as
jets; collimated streams of particles. However, collisions commonly produce additional jets other
than just those from the resonance particles. In order to reconstruct the resonance particles, the jets
produced from the partons must be identified. Event reconstruction therefore reduces to uniquely
assigning a collection of truth labels - the parent partons - to a collection of observed jets. We refer
to this as the jet-parton assignment problem.

In many cases, the reconstruction task is insensitive to swapping labels. For example, since jet
charge can usually not be reliable measured, the top and anti-top in a tt̄ event are effectively indis-
tinguishable. We refer to this kind of invariance in the resonance particles as event-level symmetries.
Similarly, a W -boson decays to a quark and anti-quark, and inverting the labels leads to the same
reconstructed W -boson. We refer to these lower-level invariances on the jet-labels as particle-level
symmetries. Exploiting such symmetries is crucial for effective event reconstruction, especially in
complex events with many jets where these invariances greatly reduce the number of possible jet
assignments. By incorporating symmetries into our reconstruction models, we may substantially
simplify the modeling task. We refer to the complete specification of an event’s particles and all of
their associated symmetries as its topology.

We study event reconstruction for three benchmark processes, although the techniques generalize to
arbitrary event topologies; top-antitop production (tt̄), top-associated Higgs production (tt̄H), and
4-top production (tt̄tt̄). We exploit the jet symmetries between the quark jets from the bosons as well
as the particle symmetries between the top quarks to aid us in finding solutions to these problems.

As a baseline comparison, we also implement the χ2 method [8, 9]. This is an example of a per-
mutation approach to set assignment, in which every possible jet permutation is explicitly tested
to produce the highest scoring assignment. While effective, this method suffers from exponential
run-time with respect to the number of jets. This quickly becomes a limiting factor in large datasets,
and makes complex topologies intractable.

3 Symmetry-Preserving Attention Networks
We introduce a general architecture for jet-parton assignment named G-SPANET: a generalization
of an attention-based neural network first described for a specific topology in [10]. The transformer
encoders employ multi-head self-attention [5] with position-independent jet embeddings to pre-
serve permutation invariance on the input. We solve the jet-parton assignment per-particle using a
generalized form of Symmetric Tensor Attention (STA) [10] and combine them using an improved
Combined Symmetric Loss which can learn from partial events. This two-step approach allows us to
naturally handle both symmetries described in Section 2 in a general manner.

Symmetric Tensor Attention Every resonance particle p has associated with it kp partons. STA
takes a set of transformer-encoded jets Xp ∈ RN×D - with N the total number of jets and D the
latent dimensionality — to produce a rank-kp tensor Pp ∈ RN×N×···×N such that

∑Pp = 1. Pp
represents a joint distribution over kp-jet assignments indicating the probability that any particular
combination of jets is the correct sub-assignment for particle p. We represent jet symmetries ap-
plicable to the current partition with a particle-level permutation group Gp ⊆ Skp which acts on
kp-tuples and defines an equivalence relation over indistinguishable jet assignments. In practice,
this equivalence relation is satisfied when the indices of Pp commute with respect to Gp.

∀σ ∈ Gp
(
j1, j2, . . . , jkp

)
'
(
jσ(1), jσ(2), . . . , jσ(kp)

)
⇐⇒ Pj1j2...jkpp = P

jσ(1)jσ(2)...jσ(kp)
p (1)

We enforce this commutativity using general dot-product attention [1], where the mixing weights
mimic the output’s symmetries. An STA layer contains a single rank-pk parameter tensor Θ ∈
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RD×D×···×D and performs the following computations, expressed using Einstein summation nota-
tion:

Si1i2...ikp =
∑
σ∈Gp

Θ
iσ(1)iσ(2)...iσ(kp) (2)

Oj1j2...jkp = Xj1
i1
Xj2
i2
. . . X

jpk
ipk
Si1i2...ikp (3)

Pj1j2...jkpp =
exp (Oj1j2...jkp )∑

j1,j2,...,jpk
exp (Oj1j2...jkp )

(4)

STA first constructs a Gp-symmetric tensor S to ensure the output’s indices will also be Gp-
symmetric. STA then performs a generalized dot-product attention which represents all kp-wise
similarities in the input sequence (Equation 3). This is the most expensive operation in network,
with a time and space complexity of O(Nkp). We then normalize the output tensor O by perform-
ing a kp-dimensional softmax, producing a final joint distribution Pp (Equation 4).

Combined Symmetric Loss and Partial Event Reconstruction The symmetric attention lay-
ers produce assignments {P1,P2, . . . ,Pm} for each particle. With true sub-assignments targets
{T1, T2, . . . , Tm}, the loss is simply the cross entropy, CE(Pp, Tp), for each resonance particle p.
We encode particle symmetries (Section 2) using an event-level permutation group GE ⊆ Sm and a
symmetrized loss. GE induces an equivalence relation over particles in a manner similar to Equa-
tion 1: ∀σ ∈ GE , (T1, T2, . . . , Tm) ' (Tσ(1), Tσ(2), . . . , Tσ(m)). We incorporate these symmetries
into the loss function by allowing the network to fit to any equivalent jet assignment by fitting to the
minimum attainable loss within a given equivalence class.

Though each parton is usually expected to produce a jet, one or more of these may sometimes not
be detected and therefore the event becomes impossible to reconstruct. This may be due to limited
detector acceptance, merging jets, or other idiosyncrasies. Events with more partons have a higher
probability that one or more of the particles will be missing a jet. Limiting our dataset to only
complete events significantly reduces the available training examples in complex event configura-
tions. Baseline permutation methods struggle with partial events because their scoring functions are
typically only valid for full permutations. Due to G-SPANET’s partitioned approach to jet-parton
assignment, we can modify our loss to recover any particles which are present in the event and
still provide a meaningful training signal from these partial events. This not only reduces the re-
quired training dataset size, but also may reduce generalization bias because such events occur in
real collision data.

We mark particles in an event with a masking value Mp ∈ {0, 1} and we only include the loss
contributed by reconstructable particles. We scale the loss based on the distribution of events
present in the training dataset by computing the effective class count for each partial combination
CB(M1,M2, . . . ,Mm) [11]. The loss function is thus defined as

Lmaskedmin = min
σ∈GE

(
m∑
i=1

Mσ(i)CE(Pi, Tσ(i))

CB
(
Mσ(1),Mσ(2), . . . ,Mσ(m)

)) (5)

In the event that we assign a jet to more than one parton, we select the higher probability assignment
first and re-evaluate the remaining P’s to select the best non-contradictory assignments.

4 Experiments
Datasets All processes are generated at

√
s = 13 TeV using MadGraph aMC@NLO [12] (v2.7.2,

NCSA license), Pythia8 [13] (v8.2, GPL-2), and Delphes [14] (v3.4.1, GPL-3) with the ATLAS
parameterization. AllW -bosons are forced to decay to a pair of light quarks, and Higgs Bosons to b-
quarks. Jets are reconstructed with the R = 0.4 anti-kT algorithm [15], pT ≥ 25 GeV and |η| < 2.5.
The 4-vector (pT, η, φ, M ) of each jet, as well as the boolean result of the a pT dependent b-tagging
algorithm, are inputs to the networks2. Truth assignments are generated by exclusively matching the
partons from the event record to the reconstructed jets via the requirement

√
∆η2 + ∆φ2 < 0.4.

Every event must contain at least as many jets as expected in the final state, at least two of which
must be b-tagged. We thus keep 10M, 14.3M, and 5.8M events out of a total 60M, 100M, and 100M
events generated for tt̄, tt̄H , and tt̄tt̄ respectively. We used 90% of events for training, 5% for
validation and hyperparameter optimization, and the final 5% for testing.

2Additional input features may trivially be added in future experiments.
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Figure 1: Average inference time over 1000 events across models and jet multiplicities, G-SPANET
evaluated with a batch size of 1024 events.

G-SPANET Training Hyperparameters are chosen using the Sherpa hyperparameter optimization
library [16]. Each network was trained using four Nvidia GeForce 3090 GPUs for 50 epochs using
the AdamW optimizer [17] with L2 regularization on all parameter weights. To improve transformer
convergence we anneal the learning rate following a cosine schedule [18], performing a warm restart
every 10 epochs. Training took a total of 4 to 6 hours depending on topology.

5 Performance
Reconstruction Efficiency We measure model performance via reconstruction efficiency, the pro-
portion of correctly assigned jets. Complete Events are those in which all resonance particles are
fully reconstructable while Partial Events are those events in which at least one but not all resonance
particles are reconstructable.The Event Fraction is the percentage of total events included in the de-
nominator for the efficiency calculations. Event Efficiency is defined as the proportion of events in
which all jets associated with reconstructable particles are correctly assigned. We also report the
per-particle efficiencies.

Event G-SPANET Efficiency
Njets Fraction Event Top Quark
== 12 0.219 0.276 0.484

All == 13 0.304 0.247 0.474
Events ≥ 14 0.450 0.198 0.450

Inclusive 0.974 0.231 0.464
== 12 0.005 0.350 0.617

Complete == 13 0.016 0.249 0.567
Events ≥ 14 0.044 0.149 0.504

Inclusive 0.066 0.191 0.529

Table 3: G-SPANET Reconstruction Efficiency
for tt̄tt̄ events at various jet selections.

Benchmark tt̄ reconstruction efficiency is pre-
sented in Table 1. We found that G-SPANET
outperforms the χ2 method in every cate-
gory, with efficiencies consistently around 20%
higher with overall performance on all events.
As expected, efficiencies drop off as Njets in-
creases, and are generally higher in Complete
Events. tt̄H reconstruction efficiency is pre-
sented in Table 2, and tt̄tt̄ reconstruction ef-
ficiency is presented Table 3, both in events
with ≥ 4 b-jets. Note that while G-SPANET is
trained on events with≥ 2 b-jets, the χ2 method
is intractable here due to the additional ambiguities which generate more permutations. We do not
show results for the χ2 in the tt̄tt̄ case because the CPU time required simply made it intractable
to calculate sufficient statistics for this problem. The performance on this dataset emphasizes the

Event G-SPANET Efficiency χ2 Efficiency
Njets Fraction Event Top Quark Event Top Quark
== 6 0.245 0.643 0.696 0.461 0.523

All == 7 0.282 0.601 0.667 0.408 0.476
Events ≥ 8 0.320 0.528 0.613 0.313 0.395

Inclusive 0.848 0.586 0.653 0.387 0.457
== 6 0.074 0.803 0.837 0.664 0.696

Complete == 7 0.105 0.667 0.754 0.457 0.556
Events ≥ 8 0.145 0.521 0.662 0.281 0.429

Inclusive 0.325 0.633 0.732 0.426 0.532

Table 1: Reconstruction Efficiency for tt̄ events at various jet selections.
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Event G-SPANET Efficiency χ2 Efficiency
Njets Fraction Event Higgs Top Event Higgs Top
== 8 0.261 0.370 0.497 0.540 0.056 0.193 0.092

All == 9 0.313 0.343 0.492 0.514 0.053 0.160 0.102
Events ≥ 10 0.313 0.294 0.472 0.473 0.031 0.150 0.056

Inclusive 0.972 0.330 0.485 0.502 0.045 0.164 0.081
== 8 0.042 0.532 0.657 0.663 0.040 0.220 0.135

Complete == 9 0.070 0.422 0.601 0.596 0.019 0.152 0.079
Events ≥ 10 0.115 0.306 0.545 0.523 0.004 0.126 0.073

Inclusive 0.228 0.383 0.583 0.572 0.016 0.153 0.087

Table 2: Reconstruction Efficiencies for tt̄H events at various jet selections.

importance of the partial-event training approach introduced in Section 3, given that only 6.6% of
the training events were complete. We further find that including partial events in the training im-
proves performance on these events by around 5% for tt̄H events, without affecting performance on
complete events.

Timing Figure 1 shows the average evaluation time per event for each benchmark topology, as
a function of Njets, for the χ2 method as well as G-SPANET evaluated on both a CPU and GPU.
G-SPANET represents an exponential improvement in run-time on larger events, with an additional
factor of 10 improvement when using a GPU. Run-time evaluation was performed on an Intel I7
10700K CPU with 64 GB of RAM and an Nvidia 3080 GPU with 10 GB of VRAM.

6 Conclusions

We have introduced G-SPANET, a network architecture based on a novel attention mechanism with
embedded symmetries, that performs set assignment tasks in a highly efficient manner. We have
further released a BSD-3 licensed python package which can generate appropriate architectures for
arbitrary topologies given a simple configuration file. We have presented three benchmark use cases
of varying complexity from the world of particle physics that demonstrate excellent performance,
both in terms of the efficiency to predict the correct assignments as well as the computational over-
head.

Crucially, the computational overhead scales efficiently with the complexity of the problem com-
pared to existing benchmarks. Applications are not limited to the specific benchmarks we have
presented, and the techniques may be generalized to many other LHC use-cases. We have further
developed novel techniques which reduce the amount of required training data relative to how neural
network training is usually performed in high energy physics, something that is crucial as simulation
requirements at the LHC continue to grow. All of these developments combined make new analyses
tractable for the first time, and may thus be crucial in the discovery of new physics in the LHC era
and beyond.
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NIPS Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

[Yes] We introduce a novel method for the problem described and demonstrate that it
outperforms currently used baselines on several benchmark problems in both perfor-
mance and speed.

(b) Did you describe the limitations of your work?

[Yes] We note in the text that we have only tested the method on quark jets, and
other experiment types could be analyzed in the future. We also mention potential
improvements to the truth-matching approach that we use for labelling which limits
the possible final assignments. Finally, we discuss potential problems of using models
trained using simulator data on real world observations.

(c) Did you discuss any potential negative societal impacts of your work?

[N/A] Our work applies primarily to fundamental problems in physics and is far re-
moved from any data specific to people or society in general. Additionally, our work
aims to reduce computational time currently spent at the LHC, thereby reducing the
environmental costs of operating the LHC.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them?

[Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results?

[Yes] We define the formal specification of our problem statement and the required
mathematical structures necessary to define the architecture in Section 3. All of our
theoretical claims about symmetry preservation originate from these formal assump-
tions.

(b) Did you include complete proofs of all theoretical results?

[Yes] We include proofs for the assertions that we make when describing the novel
attention mechanism. These are described in Section 3, and proofs are provided in
Appendix A.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)?

[Yes] We have prepared a public code repository for training and evaluating the archi-
tectures presented. This repository also includes links to the specific datasets that we
generated for each event type. We will include a link to this repository once the paper
is deanonymized.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)?

[Yes] We describe the exact method for simulating the data and the training/testing
splits in Section 4. We include some high level information about the training process
in Section 3. We define all domain-specific parameters for baseline models, a detailed
description of hyperparameters, and mathematical details for the architecture in the
appendices.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
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[No] We do not include error bars are not included (eg Tables 1,2,3), they are negligi-
ble as we have sufficient testing data statistics.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)?

[Yes] We include our training hardware in Section 4 when we describe the training
procedure, as well as the total time for hyperparameter optimization and training. We
also include the hardware which was used to perform our speed benchmarks in the
”Timing” paragraph of Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators?

[Yes] We use many physics packages to simulate our data and we cite the original
papers as well as the specific versions used for our experiments in Section 4.

(b) Did you mention the license of the assets?

[Yes] We specify the licenses of all software used during simulation as well as the
license for our own code release.

(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] We provide all training datasets that we generated for each event type in the
public code release.

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating?

[N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content?

[N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable?

[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?

[N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?

[N/A]
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8 Appendix A: Symmetric Tensor Attention Proofs
Theorem 8.1. Given a permutation group G ⊆ Sk for any integer k, a rank-k parameter tensor
Θ ∈ RD×D×···×D, and a set of input vectors X ∈ RN×D the following set of operations

Si1i2...ik =
∑
σ∈G

Θiσ(1)iσ(2)...iσ(k) (6)

Oj1j2...jk = Xj1
i1
Xj2
i2
. . . Xjk

ik
Si1i2...ik (7)

Pj1j2...jk =
exp (Oj1j2...jk)∑

j1,j2,...,jk
exp (Oj1j2...jk)

(8)

will produce a an output tensor, P , that is G-symmetric. That is,

∀σ ∈ G, Pj1j2...jk = Pjσ(1)jσ(2)...jσ(k)

Proof. In order to prove that the output, P , is G-symmetric, it is sufficient to prove that every step
produces a G-symmetric tensor. We will now prove that the result from all three steps will be
G-symmetric.

• We will first prove that the output to Equation 6, which is known as the (unnormalized)
symmetric part of tensor Θ, will be G-symmetric. That is,

∀τ ∈ G, Sj1j2...jk = Sjτ(1)jτ(2)...jτ(k)

SinceG is a group, for every element ν ∈ G, there exists a unique σ ∈ G such that ν = στ .
This is a consequence of the unique inverse property of groups, forcing that element to be
σ = ντ−1. Therefore,

Sjτ(1)jτ(2)...jτ(k) =
∑
σ∈G

Θiσ(τ(1))iσ(τ(2))...iσ(τ(k))

=
∑
ν∈G

Θ
i(ντ−1τ)(1)i(ντ−1τ)(2)...i(ντ−1τ)(k)

=
∑
ν∈G

Θiν(1)iν(2)...iν(k)

= Sj1j2...jk

• For Equation 7, we use the same X tensor k times in the expression. Since these tensors
are all identical, they are trivially symmetric since and we can freely swap the order of the
X tensors as long as we apply an inverse permutation to another set of indices. Further-
more, since S is G-symmetric from the previous step, it can also freely permute its indices
according to G. Therefore,

∀σ ∈ G,Ojσ(1)jσ(2)...jσ(k) = X
jσ(1)
i1

X
jσ(2)
i2

. . . X
jσ(k)
ik
Si1i2...ik

= Xj1
iσ−1(1)

Xj2
iσ−1(2)

. . . Xjk
iσ−1(k)

Si1i2...ik

= Xj1
i1
Xj2
i2
. . . Xjk

ik
Siσ(1)iσ(2)...iσ(k)

= Xj1
i1
Xj2
i2
. . . Xjk

ik
Si1i2...ik

= Oj1j2...jk

• For Equation 8, the operations are performed element-wise to every element in O and
the normalisation term is simply the sum of all elements in exp(O). Since summation is
commutative,

∀σ ∈ G,
∑

j1,j2,...,jk

exp (Oj1j2...jk) =
∑

jσ(1),jσ(2),...,jσ(k)

exp (Ojσ(1)jσ(2)...jσ(k))

10



Combining the fact that both the normalisation term and O are both G-symmetric, we find
that the output is also G-symmetric.

∀σ ∈ G, Pjσ(1)jσ(2)...jσ(k) =
exp (Ojσ(1)jσ(2)...jσ(k))∑

iσ(1),iσ(2),...,iσ(k)
exp (Oiσ(1)iσ(2)...iσ(k))

=
exp (Oj1j2...jk)∑

i1,i2,...,ik
exp (Oi1i2...ik)

= Pj1j2...jk

8.1 Run-time Complexity
For the following sections, we will treat the network’s hidden representation dimension D as a
constant. This is because this value is a hyperparameter which may be adjusted freely, although we
also provide the run-time expressions with D present.

• Equation 6. This expression is simply an element-wise sum over all possible elements of
group G and tensor Θ. The run-time of this step is therefore exponential with respect to the
number of partons in each partition.

O
(
|G|Dk

)
= O

(
k!Dk

)
= O

(
kkDk

)
= O

(
(Dk)k

)
= O

(
kk
)

• Equation 7. This expression evaluates a generalized tensor-product between k rank-2 ten-
sors and one rank-k tensor. The output will be rank-k tensor with sizes N ×N × · · · ×N .
For each of these outputs, the operation must perform a rank-k tensor multiplication with
sizes D ×D × · · · ×D. The run-time of this step is therefore exponential with respect to
the number of partons in each partition. We note that this is only the naive run-time and
many tensor-multiplication libraries will not use divide-and-conquer algorithms to reduce
the O

(
Dk
)

multiplication operation.

O
(
NkDk

)
= O

(
(ND)k

)
= O

(
Nk
)

• Equation 8. The normalization factor can be pre-computed once for every element of O.
This expression then reduces to simply an element-wise exponentiation and division over
all O

(
Nk
)

elements in O
The total run-time complexity of the symmetric tensor attention layer assuming that D is constant is
therefore simply

O(kk +Nk)

9 Appendix B: SPANet Modifications

9.1 Soft Loss Function
When constructing the symmetric loss function, we use the minimum loss over all equivalent particle
orderings as our optimization objective. However, this might cause instability on events where the
network is unsure, causing the loss function to flip every epoch for that event. In order to prevent
this and maintain a continually differentiable loss function, we experiment with an alternative loss

11



based on the soft min function.

Lsoftmin = soft min
σ∈GE

m∑
i=1

CE(Pi, Tσ(i))

where

soft min {x1, x2, . . . , xk} =

k∑
j=1

e−xj∑k
i=1 e

−xi
xj

9.2 Balanced Loss Scaling
We experiment with balancing the loss based on the prevalence of each combination of particles in
the target set. This is primarily to prevent the network from ignoring rare events such as the complete
tt̄tt̄ event when performing partial event training. If there is a large imbalance between classes, such
as when events with fewer particle are more prevalent, this could cause the network to bias its results
towards those more common events and worsen performance on full events.

We compute the class balance term CB(M1,M2, . . . ,Mm) where theMp terms represent binary
values indicating if a particle p is present or not in the event andm is the total number of particles. If
Mp = 1, then p is fully reconstructable in the given event, and ifMp = 0, then at least one parton
associated with particle p is not detectable.

Assume we have a dataset of size N of such events, each with their own masking vector for each
possible particle Mj

p for 1 ≤ j ≤ N and 1 ≤ p ≤ m. We will keep the particle indices in the
subscript and the dataset indices in the superscript. Assume we also have an event-level permutation
group GE ⊆ Sm (Section 3). We define our class balance, CB, based on a symmetric version of
effective class count [11].

First, we will define a counting function. Let 1P be the selection function for predicate P . This is,

1P =

{
1 if P is True
0 Otherwise

Next, define label-counting function C which simply counts how many times a particular arrange-
ment of masking values appears in our dataset.

C(M1,M2, . . . ,Mm) =

N∑
j=1

m∏
p=1

1Mj
p=Mp

Such a counting function does not account for the equivalent particle assignments that are induced
by our event-level groupGE . To accommodate particle symmetries, we create a symmetric counting
function S which counts not only the presence of any particular arrangement of masking values, but
also all equivalent arrangements.

S(M1,M2, . . . ,Mm) =
∑
σ∈GE

N∑
j=1

m∏
p=1

1Mj
p=Mσ(p)

Notice that this definition guarantees that any two equivalent masking value sets will have identical
symmetric class counts.

∀σ ∈ GE , S(M1,M2, . . . ,Mm) = S(Mσ(1),Mσ(2), . . . ,Mσ(m))

We set the scale β in effective class definition based on the size of our dataset N .

β = 1− 10− log10N

Finally, We define the class balance (CB) as the normalized values of the effective class counts
(ECC) [11]

ECC(M1,M2, . . . ,Mm) =
1− βS(M1,M2,...,Mm)

1− β

CB(M1,M2, . . . ,Mm) =
ECC(M1,M2, . . . ,Mm)∑

M′∈{0,1}m ECC(M′1,M′2, . . . ,M′m)

12



10 Appendix C: Hyperparameters

Parameter Benchmark Problems
tt̄ tt̄H tt̄tt̄

Training Epochs 50 50 50
Learning Rate 0.0015 0.00302 0.0015
Batch Size 2048 2048 2048
Dropout Percentage 0.1 0.1 0.1
L2 Gradient Clipping N/A 0.1 N/A
L2 Weight Normalization 0.0002 0.0000683 0.0002
Hidden Dimensionality 128 128 128
Central Encoder Count 6 5 2
Branch Encoder Count 3 5 7
Partial Event Training Yes Yes Yes
Loss Scaling Yes Yes Yes
Loss Type Lmin Lsoft min Lsoft min

Cosine Annealing Cycles 5 5 5
Table 4: A complete table of all hyper-parameters used duringG-SPANET training on all benchmark
problems.

11 Appendix D: χ2 Method Details
In Section 2, we introduce the χ2 method as a baseline comparison for reconstructing tt̄ and tt̄H
events. This is a standard benchmark against which we can compare the results from G-SPANET,
and has been used in multiple published results, such as [9, 8]. However, no such benchmark exists
for the tt̄H and tt̄tt̄ topologies. We thus extend the χ2 method to these topologies in a simple way
in order to have a benchmark to compare against.

χ2
tt̄ =

(mb1q1q1 −mt)
2

σ2
t

+
(mb2q2q2 −mt)

2

σ2
t

+
(mq1q1 −mW )2

σ2
W

+
(mq2q2 −mW )2

σ2
W

(9)

The tt̄ formulation we use is given in Equation 9. In [10], a different formulation of χ2 was used
that more closely matches recent ATLAS results in which σt is not used explicitly. While this
formulation reduces mass sculpting of incomplete and background events, it does not perform well
on events partial events with only a single reconstructable top quark. Further, it is unclear how to
optimally extend this formulation to the tt̄tt̄ case. Thus, in this work we prefer the formulation that
explicitly includes mt.

The χ2 is evaluated on tt̄H events as:

χ2
tt̄H =

(mb1q1q1 −mt)
2

σ2
t

+
(mb2q2q2 −mt)

2

σ2
t

+
(mq1q1 −mW )2

σ2
W

+
(mq2q2 −mW )2

σ2
W

+
(mb0b0 −mH)2

σ2
H

, (10)

where we have simply added an additional term to Equation 9 for the Higgs boson, analogously to
the terms used for the W -bosons. We label the jets hypothesized to be the decay products of the
Higgs boson as b0 here and find σH = 22.3 GeV in our dataset.

The χ2 for tt̄tt̄ is given by the expression

χ2
tt̄tt̄ =

(mb1q1q1 −mt)
2

σ2
t

+
(mb2q2q2 −mt)

2

σ2
t

+
(mb3q3q3 −mt)

2

σ2
t

+
(mb4q4q4 − t)2

σ2
t

+
(mq1q1 −mW )2

σ2
W

+
(mq2q2 −mW )2

σ2
W

+
(mq3q3 −mW )2

σ2
W

+
(mq4q4 −mW )2

σ2
W

, (11)
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where we have simply added additional, identical terms for the third and fourth top quarks and W -
bosons. We find that the complexity of the 12 parton final state makes this effectively intractable
and thus do not present reconstruction performance with this formulation, presenting it only as a
demonstration that the CPU overhead required in this topology means permutation methods do not
scale to these events.

12 Appendix E: Additional Result Tables

Njets Event Fraction Event Efficiency Top Quark Efficiency
All Events == 6 0.245 0.643 0.696

== 7 0.282 0.601 0.667
≥ 8 0.320 0.528 0.613

Inclusive 0.848 0.586 0.653
1 Top Events == 6 0.171 0.574 0.574

== 7 0.176 0.562 0.562
≥ 8 0.175 0.534 0.534

Inclusive 0.524 0.556 0.556
2 Top Events == 6 0.073 0.803 0.837

== 7 0.105 0.667 0.754
≥ 8 0.144 0.521 0.662

Inclusive 0.325 0.633 0.732

Table 5: G-SPANET results on tt̄ using Pythia showering.

Njets Event Fraction Event Efficiency Top Quark Efficiency
All Events == 6 0.245 0.461 0.523

== 7 0.848 0.282 0.476
≥ 8 0.320 0.313 0.395

Inclusive 0.848 0.387 0.457
1 Top Events == 6 0.171 0.373 0.373

== 7 0.530 0.176 0.379
≥ 8 0.483 0.175 0.338

Inclusive 0.524 0.363 0.363
2 Top Events == 6 0.073 0.664 0.696

== 7 0.105 0.457 0.556
≥ 8 0.144 0.281 0.429

Inclusive 0.324 0.426 0.532

Table 6: χ2 method results on tt̄ using Pythia showering.
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Njets Event Fraction Event Efficiency Top Quark Efficiency
All Events == 6 0.220 0.659 0.711

== 7 0.222 0.629 0.678
≥ 8 0.185 0.564 0.618

Inclusive 0.629 0.620 0.672
1 Top Events == 6 0.156 0.593 0.593

== 7 0.163 0.614 0.614
≥ 8 0.138 0.575 0.575

Inclusive 0.459 0.595 0.595
2 Top Events == 6 0.064 0.819 0.854

== 7 0.059 0.672 0.765
≥ 8 0.046 0.533 0.684

Inclusive 0.170 0.690 0.777

Table 7: G-SPANET results on tt̄ using Herwig showering.

Njets Event Fraction Event Efficiency Top Quark Efficiency
All Events == 6 0.220 0.505 0.560

== 7 0.222 0.442 0.488
≥ 8 0.185 0.338 0.386

Inclusive 0.629 0.434 0.484
1 Top Events == 6 0.156 0.434 0.434

== 7 0.163 0.442 0.442
≥ 8 0.138 0.363 0.363

Inclusive 0.459 0.415 0.415
2 Top Events == 6 0.064 0.678 0.713

== 7 0.059 0.442 0.553
≥ 8 0.046 0.263 0.419

Inclusive 0.170 0.483 0.577

Table 8: χ2 method results on tt̄ using Herwig showering.

Njets Event Fraction Event Efficiency Higgs Efficiency Top Quark Efficiency
All Events == 8 0.281 0.329 0.430 0.498

== 9 0.316 0.304 0.430 0.476
≥ 10 0.355 0.264 0.420 0.441

Inclusive 0.954 0.297 0.426 0.468
Higgs Events == 8 0.197 0.317 0.430 0.531

== 9 0.227 0.295 0.430 0.504
≥ 10 0.261 0.257 0.420 0.462

Inclusive 0.686 0.287 0.426 0.493
1 Top Events == 8 0.167 0.314 0.413 0.466

== 9 0.177 0.297 0.409 0.448
≥ 10 0.184 0.273 0.397 0.421

Inclusive 0.529 0.294 0.406 0.444
2 Top Events == 8 0.066 0.352 0.590 0.539

== 9 0.092 0.295 0.540 0.504
≥ 10 0.130 0.225 0.490 0.456

Inclusive 0.289 0.277 0.526 0.490
Full Events == 8 0.036 0.440 0.590 0.599

== 9 0.057 0.344 0.540 0.542
≥ 10 0.087 0.248 0.490 0.480

Inclusive 0.180 0.317 0.526 0.523

Table 9: G-SPANET results on tt̄H with at least 2 btagged jets (all generated events).
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Njets Event Fraction Event Efficiency Higgs Efficiency Top Quark Efficiency
All Events == 8 0.260 0.370 0.497 0.540

== 9 0.313 0.343 0.492 0.514
≥ 10 0.397 0.294 0.472 0.473

Inclusive 0.972 0.330 0.485 0.502
Higgs Events == 8 0.209 0.380 0.497 0.580

== 9 0.252 0.355 0.492 0.550
≥ 10 0.320 0.302 0.472 0.501

Inclusive 0.782 0.340 0.485 0.535
1 Top Events == 8 0.153 0.335 0.479 0.494

== 9 0.171 0.324 0.474 0.475
≥ 10 0.199 0.296 0.448 0.446

Inclusive 0.524 0.316 0.466 0.469
2 Top Events == 8 0.061 0.435 0.657 0.597

== 9 0.096 0.360 0.601 0.550
≥ 10 0.153 0.269 0.545 0.491

Inclusive 0.310 0.330 0.583 0.530
Full Events == 8 0.042 0.532 0.657 0.663

== 9 0.070 0.422 0.601 0.596
≥ 10 0.116 0.306 0.545 0.523

Inclusive 0.228 0.383 0.583 0.572

Table 10: G-SPANET results on tt̄H with at least 4 btagged jets (filtered events).

Njets Event Fraction Event Efficiency Top Quark Efficiency
All Events == 12 0.227 0.257 0.458

== 13 0.309 0.232 0.453
≥ 14 0.433 0.185 0.426

Inclusive 0.970 0.217 0.441
1 Top Events == 12 0.060 0.412 0.412

== 13 0.069 0.399 0.399
≥ 14 0.073 0.374 0.374

Inclusive 0.202 0.394 0.394
2 Top Events == 12 0.106 0.217 0.441

== 13 0.136 0.206 0.430
≥ 14 0.172 0.181 0.406

Inclusive 0.415 0.198 0.423
3 Top Events == 12 0.056 0.162 0.482

== 13 0.089 0.148 0.471
≥ 14 0.148 0.117 0.436

Inclusive 0.294 0.135 0.455
4 Top Events == 12 0.005 0.297 0.580

== 13 0.014 0.211 0.543
≥ 14 0.039 0.111 0.470

Inclusive 0.059 0.152 0.497

Table 11: G-SPANET results on tt̄tt̄ with at least 2 btagged jets (all generated events).
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Njets Event Fraction Event Efficiency Top Quark Efficiency
All Events == 12 0.219 0.276 0.484

== 13 0.304 0.247 0.474
≥ 14 0.450 0.198 0.450

Inclusive 0.974 0.231 0.464
1 Top Events == 12 0.055 0.422 0.422

== 13 0.062 0.414 0.414
≥ 14 0.0684 0.388 0.388

Inclusive 0.185 0.407 0.407
2 Top Events == 12 0.101 0.235 0.461

== 13 0.132 0.222 0.445
≥ 14 0.175 0.194 0.420

Inclusive 0.410 0.213 0.438
3 Top Events == 12 0.057 0.200 0.513

== 13 0.094 0.172 0.492
≥ 14 0.162 0.136 0.460

Inclusive 0.313 0.159 0.479
4 Top Events == 12 0.006 0.350 0.617

== 13 0.016 0.249 0.567
≥ 14 0.044 0.149 0.504

Inclusive 0.066 0.191 0.529

Table 12: G-SPANET results on tt̄tt̄ with at least 4 btagged jets (filtered events).
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