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Abstract

The prediction of quantum mechanical properties is historically plagued by a trade-
off between accuracy and speed. Machine learning potentials have previously
shown great success in this domain, reaching increasingly better accuracy while
maintaining computational efficiency comparable with classical force fields. In this
work we propose a novel equivariant Transformer architecture, outperforming state-
of-the-art on MD17 and ANI-1. Through an extensive attention weight analysis,
we gain valuable insights into the black box predictor and show differences in the
learned representation of conformers versus conformations sampled from molecular
dynamics or normal modes. Furthermore, we highlight the importance of datasets
including off-equilibrium conformations for the evaluation of molecular potentials.

1 Introduction

Quantum mechanics are essential for the computational analysis and design of molecules and materi-
als. However, the complete solution of the Schrédinger equation is analytically and computationally
not practical, which initiated the study of approximations in the past decades [Szabo and Ostlund|
1996]. A common quantum mechanics approximation method is to model atomic systems according
to density functional theory (DFT), which can provide energy estimates with sufficiently high accu-
racy for different application cases in biology, physics, chemistry, and materials science. Even more
accurate techniques like coupled-cluster exist but both still lack the computational efficiency to be
applied on a larger scale, although recent advances are promising in the case of coupled-cluster [Pfau
et al.| 2020, Hermann et al.}[2020]. Other methods include force-field and semi-empirical quantum
mechanical theories, which provide very efficient estimates but lack accuracy.

The field of machine learning molecular potentials is relatively novel. The first important contributions
are rooted in the Behler-Parrinello (BP) representation [Behler, |2011]] and the seminal work from
Rupp et al.|[2012]. One of the best transferable machine learning potentials for biomolecules, ANI
[Smith et al., 2017a]], is based on BP. A second class of methods, mainly developed in the field of
materials science and quantum chemistry, uses more modern graph convolutions [Schiitt et al., 2018},
Unke and Meuwlyl, 2019, |Q1a0 et al., 2020, Schiitt et al.,[2021]]. Recently, other work has shown that a
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Figure 1: Overview of the equivariant Transformer architecture. Thin lines: scalar features in
R¥, thick lines: vector features in R3*¥ | dashed lines: multiple feature vectors. (a) Transformer
consisting of an embedding layer, update layers and an output network. (b) Residual update layer
including attention based interatomic interactions and information exchange between scalar and
vector features. (¢) Modified dot-product attention mechanism, scaling values (blue) by the attention
weights (red).

shift towards rotationally equivariant networks [Anderson et al., 2019, [Fuchs et al.| [2020, Schiitt et al.|
2021]], particularly useful when the predicted quantities are vectors and tensors, can also improve the
accuracy on scalars (e.g. energy).

In this work, we introduce an equivariant Transformer (ET) architecture for the prediction of quantum
mechanical properties. By building on top of the Transformer [Vaswani et al.,[2017]] architecture,
we are centering the design around the attention mechanism, achieving state-of-the-art accuracy on
multiple benchmarks while relying solely on a learned featurization of atomic types and coordinates.
Furthermore, we gain insights into the black box prediction of neural networks by analyzing the
Transformer’s attention weights and comparing latent representations.

2 Methods

The equivariant Transformer is made up of three main blocks. An embedding layer encodes atom
types Z and the atomic neighborhood of each atom into a dense feature vector ;. Then, a series of
update layers compute interactions between pairs of atoms through a modified multi-head attention
mechanism, with which the latent atomic representations are updated. Finally, an output network
computes scalar atomwise predictions using gated equivariant blocks [Schiitt et al., [2021]], which
get aggregated into a single molecular prediction. This can be matched with a scalar target variable
or differentiated against atomic coordinates, providing force predictions. An illustration of the
architecture is given in Figure[T} A detailed description can be found in the supplementary material.

2.1 Training

Models are trained from scratch using mean squared error loss and the Adam optimizer [Kingma
and Bal |2017|] with parameters 81 = 0.9, 8o = 0.999 and € = 10~8. Linear learning rate warm-up is
applied as suggested by [Vaswani et al|[2017] by scaling the learning rate with & = "2 After the

Nsteps

warm-up period, we systematically decrease the learning rate by scaling with a decay factor upon
reaching a plateau in validation loss. The learning rate is decreased down to a minimum of 10~7. We
found that weight decay and dropout do not improve generalization in this context. When training on
energies and forces, we apply exponential smoothing to the energy’s train and validation loss. New
losses are discounted with a factor of o = 0.05. See supplementary material for a complete list of
hyperparameters. The full model comprises 1.34 million parameters.



Table 1: Results on MD trajectories from the MD17 dataset. Scores are given by the MAE of energy
predictions (kcal/mol) and forces (kcal/mol/A). NequlP does not provide errors on energy, for PaiNN
we include the results with lower force error out of training only on forces versus on forces and
energy. Benzene corresponds to the dataset originally released in [Chmiela et al.| [2017]], which is
sometimes left out from the literature. ET results are averaged over three random splits + standard
deviation.

Molecule SchNet PhysNet DimeNet PaiNN NequlP ET

Asoirin energy 037 0.230 0204  0.167 - 0.124 £ 0.001
p forces 135 0.605 0499 0338 0348  0.255 + 0.007
Benzene energy 0.08 - 0.078 - - 0.056 + 0.003
forces 031 - 0.187 - 0.187  0.201 + 0.008

Ethanol energy  0.08 0.059 0.064  0.064 - 0.054 = 0.000
forces 039 0.160 0230 0224 0208  0.116 = 0.001

. energy  0.13 0.094 0.104  0.091 - 0.079 £ 0.001
Malondialdehyde o © ('6q 0.319 0383 0319 0337  0.176 & 0.003
Naohthalene energy  0.16 0.142 0.122  0.116 - 0.085 = 0.000
p forces  0.58 0.310 0215 0077  0.097  0.060 < 0.002
Salievlic Acid energy 0.20 0.126 0.134 0.116 - 0.094 + 0.001
y forces 085 0.337 0374 0195 0238  0.135 % 0.006
Toluene energy  0.12 0.100 0.102  0.095 - 0.074 == 0.000
forces 057 0.191 0216  0.094  0.101  0.066 % 0.001

Uracil energy  0.14 0.108 0.115  0.106 0.096 == 0.000

forces 0.56 0.218 0.301 0.139 0.173  0.094 + 0.000

3 Experiments and Results

The MD17 [[Chmiela et al] 2017]] dataset consists of molecular dynamics (MD) trajectories of small
organic molecules, including both energies and forces. Forces are predicted using the negative

gradient of the energy with respect to atomic coordinates F, = —0E /OT;. We train on 1000 samples
from which 50 are used for validation. The remaining data is used for evaluation and is the basis for
comparison with other work. Separate models are trained for each molecule using a combined loss
function for energies and forces where the energy loss is multiplied with a factor of 0.2 and the force
loss with 0.8. An overview of the results and comparison to SchNet [Schiitt et al.,2017b]], PhysNet

nke and Meuwly}, 2019], DimeNet [Klicpera et al.,[2020], PaiNN [Schiitt et al.,[2021] and NequlP
Batzner et al., 2021]] can be found in Table[l}

To evaluate the architecture’s capabilities on a large collection of off-equilibrium conformations, we
train and evaluate the equivariant Transformer on the ANI-1 [Smith et al., 2017b] dataset. It contains
22,057,374 configurations of 57,462 small organic molecules with up to 8 heavy atoms and atomic
species H, C, N, and O. The off-equilibrium data points are generated via exhaustive normal mode
sampling of the energy minimized molecules. The model is fitted on DFT energies from 80% of
the dataset, while 5% are used as validation and the remaining 15% of the data make up the test set.
Figure 2] compares the equivariant Transformer’s performance to previous methods DTNN

[2017al], SchNet [Schiitt et al.| 2017b], MGCN [2019] and ANI [Smith et al., 2017a].

WSO 0113 W 0108 Figure 2: Comparison of testing
%\ 0.08 MAE on the ANI-1 dataset in eV. Re-
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<§‘: 0.04 0.057 are provided by [Lu et al|[2019]. The

0.02 0.010 ANI method refers to the ANAKIN-

0.00 — ME [Smith et al., 2017a] model used

DTNN  SchNet MGCN  ANI ET for constructing the ANI-1 dataset.



3.1 Attention Weight Analysis

Neural network predictions are notoriously difficult to interpret due to the complex nature of the
learned transformations. To shed light into the black box predictor, we extract and analyze the
equivariant Transformer’s attention weights. We run inference on the ANI-1 [Smith et al, 2017b]],
QM9 [Ramakrishnan et al,[2014]), and MD17 [Chmiela et al.l 2017] test sets for all molecules and
extract each sample’s attention matrix from all attention heads in all layers. Attention rollout
and Zuidema), 2020] under the single head assumption is applied during the extraction, resulting in
a single attention matrix per sample. We average attention weights over each unique combination
of interacting atom types, leaving two attention scores for each pair of atom types, one from the
perspective of z; attending z3 and vice versa.

The attention scores are compared to bond probabilities extracted from the same molecules to make
sure the network does not simply attend interacting atoms proportional to the relative frequency in
the dataset. Figure 3] presents a summary of the distilled probabilities and attention scores for QM9,
ANI-1, and the average attention scores for all MD17 models. We normalize each row to sum to one.
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Figure 3: Depiction of bond probabilities and attention scores extracted from the ET using QM9
(total energy Uy), MD17 (average over 8 discussed molecules) and ANI-1 testing data. Attention
scores are given as z; attending z;, bond probabilities follow the same idea, showing the conditional
probability of a bond between z; and z;, given z;. Darker colors correspond to larger values, element
pairs without data are grayed out.

4 Discussion

In this work, we introduce a novel attention-based architecture for the prediction of quantum mechan-
ical properties, leveraging the use of rotationally equivariant features. We set a new state-of-the-art
on all MD17 targets (except force prediction of the molecule Benzene) and demonstrate the archi-
tecture’s ability to work in a low data regime. By extracting and analyzing the model’s attention
weights, we gain insights into the molecular representation, which is characterized by the nature
of the corresponding training data. We show that the model does not pay much attention to the
location of hydrogen when trained only on energy-minimized molecules, while a model trained on
data including off-equilibrium conformations focuses to a large degree on hydrogen. Neural networks
and especially Transformers are known to require large amounts of training data and computational
power. It should be taken into consideration that training these kinds of models requires significant
amounts of energy and causes the emission of greenhouse gases.



Software and Data

The equivariant Transformer is implemented in PyTorch [Paszke et al.,2019], using PyTorch Geomet-
ric [Fey and Lenssen, [2019] as the underlying framework for geometric deep learning. Training is
done using pytorch-lightning [Falcon and The PyTorch Lightning team| 2019], a high-level interface
for training PyTorch models. The datasets QM MDl and ANI- l are publicly available and
all source code for training, running and analyzing the models presented in this work is available at
https://github.com/torchmd/torchmd-net|
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A Hyperparameters

Table 2] provides an overview of hyperparameters used for training the ET on MD17 and ANI-1.

Table 2: Comparison of various hyperparameters used for MD17 and ANI-1.

Parameter MD17 ANI-1
initial learning rate  1-1073 7.107%
Ir patience (epochs) 30 5
Ir decay factor 0.8 0.5
Ir warmup steps 1,000 10,000
batch size 8 2048
no. layers 6 6
no. RBFs 32 32
feature dimension 128 128

B Neighbor Embedding

The embedding layer assigns two learned vectors to each atom type z;. One is used to encode infor-
mation specific to an atom, the other takes the role of a neighborhood embedding. The neighborhood
embedding, which is an embedding of the types of neighboring atoms, is multiplied by a distance
filter. This operation resembles a continuous-filter convolution [[Schiitt et al., 2017b] but, as it is used
in the first layer, allows the model to store atomic information in two separate weight matrices. These
can be thought of as containing information that is intrinsic to an atom versus information about the
interaction of two atoms.

The distance filter is generated from expanded interatomic distances using a linear transformation
WF . First, the distance d;; between two atoms 4 and j is expanded via a set of exponential normal
radial basis functions eRBY | defined as

en " (di) = ¢(dij) exp(—Pr(exp(—dij) — px)?) (1)
where ), and uy are fixed parameters specifying the center and width of radial basis function k.
The p vector is initialized with values equally spaced between exp(—d.ys) and 1, 3 is initialized
as (2K~ 1(1 — exp(—deut))) "2 for all k as proposed by [Unke and Meuwly| [2019]]. The cutoff
distance d.y was set to SA. The cosine cutoff #(d;;) is used to ensure a smooth transition to 0 as d;;
approaches d., in order to avoid jumps in the regression landscape. It is given by

1 7Tdij ) ) .
— | cos +1), ifd;; <dcy

o(dij) = { 2 ( (dcut ’ ' 2
0, if d” > deut-

The neighborhood embedding n; for atom ¢ is then defined as

N
n; = Zan(zj) © WFeRBF(dij) (3)
j=1

with a,, being the neighborhood embedding function and N the number of atoms in the graph. The
final atomic embedding x; is calculated as a linear projection of the concatenated intrinsic embedding
and neighborhood embedding [a;(z;), n;], resulting in

€T, = WC [ai(zi), nl] + bc @)
with a; being the intrinsic embedding function. The vector features ; are initially set to 0.

C Equivariant Transformer Architecture

C.1 Modified Attention Mechanism

We use a modified multi-head attention mechanism (Figure[If), extending dot-product attention, in
order to include edge data into the calculation of attention weights. The edge data, i.e. interatomic



distances r;;, are projected into two multidimensional filters D* and DV, according to
DX = (WP RBF (r,) 4+ bP")
DY = o(WP" eRBF () + bP7)

The attention weights are computed via an extended dot product, i.e. an elementwise multiplication
and subsequent sum over the feature dimension, of the three input vectors: query @, key K and
distance projection D¥:

(&)

P
dot(Q, K, D) =Y " Q1 © Ky © Df (6)
k

The resulting matrix is passed through a nonlinear activation function and is weighted by a cosine
cutoff (see equation , ensuring that atoms with a distance larger than d..,,; do not interact. Tradi-
tionally, the resulting attention matrix A is passed through a softmax activation, however, we replace

this step with a SiLU function to preserve the distance cutoff. The softmax scaling factor of \/dy _1,
which normally rescales small gradients from the softmax function, is left out. Work by |(Choromanski
et al.|[2021]] suggests that replacing the softmax activation function in Transformers with ReLU-like
functions might even improve accuracy, supporting the idea of switching to SiL.U in this case.

We place a continuous filter graph convolution [Schiitt et al.,[2017b] in the attention mechanism’s value
pathway. This enables the model to not only consider interatomic distances in the attention weights
but also incorporate this information into the feature vectors directly. The resulting representation
is split into three equally sized vectors s}ﬁ s?j, 53]. € R¥. The vector s?j is scaled by the attention
matrix A and aggregated over the value-dimension, leading to an updated list of feature vectors. The
linear transformation O is used to combine the attention heads’ outputs into a single feature vector

y; € R384,

S}j, s?j, sf’j split(V; ® Dvij)

N
f )
w=0(> 4,5,
J

The attention mechanism’s output, therefore, corresponds to the updated scalar feature vectors y; and
scalar filters s}j and S?j, which are used to weight the directional information inside the update layer.

C.2 Update Layer

The update layer (Figure[Tp) is used to compute interactions between atoms (attention block) and
exchange information between scalar and vector features. The updated scalar features y; from the
attention block are split up into three feature vectors ¢}, g2, ¢3 € RY. The first feature vector, ¢;,
takes the role of a residual around the scaled vector features. The resulting scalar feature update Ax;
of this update layer is then defined as

Az; = qf + q; © (U1, UaT;) (8)

where (U, 7;, Us¥;) denotes the scalar product of vector features @, transformed by linear projections
U1 and U- 2.

On the side of the vector features, scalar information is introduced through a multiplication between
q3 and a linear projection of the vector features U3 ;. The representation is updated with equivariant
features using the directional vector between two atoms. The edge-wise directional information
is multiplied with scalar filter s?j and added to the rescaled vector features S}j - U;. The result is
aggregated inside each atom, forming ;. The final vector feature update Av; for the current update
layer is then produced by adding the weighted scalar features to the equivariant features ;.

i 7

N
- 1 — 2
w‘ZZS<'®U‘+S»~®ﬁ
3 - (%] J (%] ||T1 77’]‘” (9)



	Introduction
	Methods
	Training

	Experiments and Results
	Attention Weight Analysis

	Discussion
	Hyperparameters
	Neighbor Embedding
	Equivariant Transformer Architecture
	Modified Attention Mechanism
	Update Layer


