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Abstract

Many Bayesian inference problems in cosmology involve complex models. Despite
the fact that these models have been meticulously designed, they can lead to
intractable likelihood and each forward simulation itself can be computationally
expensive, thus making the inverse problem of learning the model parameters a
challenging task. In this paper, we develop an approximate model for the 3D matter
power spectrum, Pδ(k, z), which is a central quantity in a weak lensing analysis.
An important output of this approximate model, often referred to as surrogate
model or emulator, are the first and second derivatives with respect to the input
cosmological parameters. Without the emulator, the calculation of the derivatives
requires multiple calls of the simulator, that is, the accurate Boltzmann solver,
CLASS (Lesgourgues, 2011). We illustrate the application of the emulator in the
calculation of different weak lensing and intrinsic alignment power spectra and we
also demonstrate its performance on a toy simulated weak lensing dataset.

1 Introduction

The 3D matter power spectrum, Pδ(k, z) is central to most cosmological data analysis, such as
cosmic shear, galaxy clustering and others. These analyses require the computation of relevant
power spectra and the latter can be computed numerically in a fast way only if the calculation of
Pδ(k, z) itself is fast enough. Machine Learning (ML) techniques have been exploited to accelerate
cosmological data analysis. For example, recent techniques such as density estimation uses the
Expectation-Maximisation (EM) and neural networks (NN) to directly learn the posterior distribution
of cosmological and nuisance parameters from a set of compressed data vectors, evaluated at different
points in the parameter space (Alsing et al., 2018, 2019; Alsing & Wandelt, 2019). These techniques
can further be explored and applied to other cosmological analysis, for example, a weak lensing
analysis.

The surrogate model developed in this work can easily pave its way in current and future weak lensing
analysis. A weak lensing analysis requires the calculation of 1

2n(n+ 1) weak lensing and intrinsic
alignment power spectra and in recent analyses, 5 tomographic redshift distributions are used and
this results in the calculation of 15 power spectra. In future surveys, it is expected that the number
of tomographic redshift distributions will increase to 10 and this will be very expensive if we use
standard solvers such as CAMB (Lewis & Challinor, 2011) or CLASS. However, the different power
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spectra can easily be calculated once Pδ(k, χ) is computed since they all involve integration of the
form:

C` =

∫ χH

0

g(χ)Pδ(k, χ) dχ. (1)

χ is the comoving radial distance and g(χ) is a function of the redshift distribution, n(χ). Pδ(k, χ)
becomes more expensive if we choose to use large N-body simulations, where each forward simulation
can take minutes or hours.

Related Work: Emulation has been applied in different cosmological data analyses. For example,
Fendt & Wandelt (2007) developed the Parameters for the Impatient Cosmologist (PICO), which is
based on polynomial regression, to interpolate Cosmic Microwave Background (CMB) power spectra
at test points in parameter space. A similar application to CMB was performed by Auld et al. (2007)
using neural networks. Gaussian Process (GP) was used in the Coyote Universe collaboration (Habib
et al., 2007; Heitmann et al., 2009, 2010, 2014; Lawrence et al., 2010) for emulating the matter power
spectrum for N-body simulations. In the same spirit, other emulators were designed based on neural
networks for the matter power spectrum, 21cm power spectrum in the context of epoch of reionisation
and others (Agarwal et al., 2012, 2014; Aricò et al., 2021; Ho et al., 2021).

In this work, we re-write the 3D matter power spectrum as

Pδ(k, z) = D(z)[1 + q(k, z)]Plin(k, z0) (2)

where D(z) is the linear growth factor (assumed scale-independent), and Plin(k, z0) is a scale-
independent reference linear matter power spectrum at fixed redshift z0. The quantity q(k, z) not
only encapsulates the non-linear contributions, but also any scale-dependence in the linear growth
factor, for instance due to massive neutrinos or modified gravity. We first approximate the 3 different
quantities at each redshift, z and wavenumber, k, with a set of polynomial functions and we model
the residuals using a kernel function. Once the model is trained and stored, we can also compute
analytical first and second derivatives of Pδ(k, z). Moreover, following Equation 1, we can now use
the surrogate model to compute any power spectra and in the weak lensing context, we compute three
different power spectra. These are then used to in a Bayesian inverse problem to infer cosmological
parameters using a simulated dataset.

2 The Approximate Model

Following a recent weak lensing analysis by Köhlinger et al. (2017), we follow a similar range for all
cosmological parameters

θ = [Ωcdmh
2, Ωbh

2, ln(1010As), ns, h]

and the redshift range is z ∈ [0.0, 5.0] and the wavenumber range, k ∈ [10−4, 50.0]. The input
training points are generated using Latin Hypercube Sampling (LHS) and these are scaled to the
appropriate range of the input cosmological parameters. Pδ(k, z) is then evaluated at 20 redshifts
in the linear scale and at 40 wavenumbers in the logarithmic scale corresponding to the pre-defined
ranges. The three different components, namely the growth factor, D(z), the q(k, z) function and
the linear matter power spectrum Plin(k, z0) are then computed at N design points, θ, such that we
have a training set, {θ,yi}. This results in a total of 860 outputs from the simulator, CLASS. It takes
∼ 30 seconds on average to do one forward simulation. For example, in our application, it took 520
minutes to generate the targets (D, q, Plin) for 1000 input cosmologies. For each of the output, we
assume the following model

y = Φβ + f + ε, (3)

where Φ consist of a set of basis functions, β is a set of latent variables for which we assume
a multivariate Gaussian distribution with mean µ and covariance C, f is the deterministic error
component of the model and ε is just the noise term, with zero mean and covariance Σ. A multivariate
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Gaussian prior is used for f , with zero mean and covariance (kernel matrix) K. In particular, for the
latter, we choose the Squared-Exponential kernel function such that

cov(fi, fj) = λ2exp[−1

2
(θi − θj)TΩ−1(θi − θj)]. (4)

with λ and Ω = diag(ω1, ω2 . . . ω5) being the set of kernel hyperparameters. These are fixed by
maximising the marginal likelihood:

log p(y) = −1

2
(y −Φµ)T(Ky + ΦCΦT)−1(y −Φµ)− 1

2
log
∣∣Ky + ΦCΦT

∣∣+ constant (5)
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Figure 1: To investigate the performance of the emulator, we draw an independent set of cosmological
parameters, randomly from the prior and we calculate the fractional error between the predicted ones
with the surrogate model and CLASS. The mean of ∆Pδ/Pδ is shown by the broken horizontal line
and the 3σ confidence interval, derived from the standard deviations of all experiments, is shown in
pale blue. For an accurate emulator, it is expected that the mean is centred on 0 and this demonstrates
the robustness of this method. Note that in this procedure, one can also specify the number of desired
power spectra for z ∈ [0.0, 5.0]. For example, for p cosmological parameters and n redshifts, we
have np power spectra outputs. In the bottom panel, we show the absolute error on a logarithmic
scale.

where we have defined Ky = K + Σ. For this application, we use polynomial basis functions,
[1, θ, θ2] and a similar approach was adopted by Schneider et al. (2011) who used a second order
polynomial model for emulating the CBM power spectrum. Training the emulator, that is, learning
the kernel hyperparameters, for the different targets, took around 340 minutes. All experiments were
conducted on an Intel Core i7-9700 CPU desktop computer. Once the models are trained and stored,
the mean ȳ∗ = X∗β̂+f∗ and variance var(y∗) = X∗VβX

T
∗ +k∗∗ +σ2

∗−kT
∗K

−1
y k∗ can be computed

given a test point, θ∗ within the prior range. We have defined X∗ = Φ∗−kT
∗K

−1
y Φ and f∗ = kT

∗K
−1
y y.

Φ∗ is the set of basis functions computed at the test point, θ∗. β̂ = Vβ[ΦTK−1
y y + C−1µ] and

Vβ = [ΦTK−1
y Φ + C−1]−1 correspond to the posterior mean and variance of β. In addition, the first

and second derivatives of the surrogate model are:

∂ȳ∗
∂θ∗

=
∂Φ∗

∂θ∗
β̂ +

[
k∗ � Z∗Ω

−1
]T

K−1
y (y −Φβ̂) (6)
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and

∂2ȳ∗
∂θ2

∗
=
∂2Φ∗

∂θ2
∗
β̂ +

[
Ω−1 ∂k∗

∂θ∗
Z∗ − Ω−1 � k∗

]
K−1
y (y −Φβ̂). (7)

3 Results

In this section, we highlight the main results after the different approximate models are constructed.
In particular, we use 1000 training points to build the latter and we use a separate, independent set of
100 power spectra computed using the simulator to assess the performance of the emulator.
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Figure 2: The left, centre and right panels show the different weak lensing power spectra as calculated
by the emulator (broken curves) and the accurate model, CLASS, shown by the solid curves. The
different power spectra within each panel correspond to the auto- and cross- power spectra, due to the
2 tomographic redshift distributions, hence leading to 00, 10, and 11 power spectra. These power
spectra are then added, via the intrinsic alignment parameter, AIA to construct a final model, C tot

`,ij in
a weak lensing analysis.

In Figure 1, the top and bottom panel show the fractional uncertainty and absolute fractional un-
certainty in linear and logarithmic scales respectively. In Figure 2, we show the different types of
weak lensing power spectra calculated using CLASS and the emulator. The left, middle and right
panel show the auto- and cross- EE, II and II power spectra due to the two Gaussian tomographic
bins. In the three panels, the blue, orange and green curves correspond to the auto- and cross- power
spectra, C`,00, C`,10 and C`,11 as computed by CLASS. Similarly, the red, purple and brown broken
curves are the power spectra generated by the emulator. The power spectra are in agreement when
comparing CLASS and the emulator. Note that, in a typical weak lensing analysis, the three different
types of power spectra (EE, GI and II) are combined together via the intrinsic alignment parameter,
AIA, that is, C tot

`,ij = CEE
`,ij +A2

IAC
II
`,ij −AIAC

GI
`,ij .

We also test the emulator on simulated weak-lensing bandpowers. We assume measurements over
10 ≤ ` ≤ 1500 and 5 tomographic slices with Gaussian n(z), centred on redshifts [0.5, 1.0, 1.5, 2.0,
2.5] and each having a standard deviation of 0.075. Ten bandpowers, equally spaced in logarithmic
scale, are used and this gives us a set of 150 data points. Moreover, we simulate and then assume in the
likelihood independent Gaussian errors with, for simplicity, σ = 0.5B̂`, where B̂` is the bandpower
evaluated at the fiducial set of cosmological parameters. For this particular case, we have set AIA = 0
but one can trivially include this factor and marginalise over it in the sampling process. The fiducial
point θfid = [0.12, 0.0225, 3.45, 1.0, 0.72] is used to generate the data and is shown by the black dots
in Figure 3. We use a Gaussian likelihood and uniform priors on all cosmological parameters, similar
to the range of the inputs of the emulator. Figure 3 shows the results obtained when sampling the
cosmological parameters on this toy data set. The red contours correspond to the result using the
emulator while the pale blue colour refers to the posterior distributions using CLASS. We run three
separate MCMC chains using the emcee sampler (Foreman-Mackey et al., 2013), each with 150 000
MCMC samples, two with the emulator and one with CLASS. On each of the three resulting pairs
of runs, we compute the Gelman-Rubin convergence parameter, R̂ (Gelman & Rubin, 1992). The
worst R̂ value is 1.002, consistent with all three chains being drawn from the same distribution, and
corroborating the agreement shown in Figure 3. The emulator developed in this work is thus able
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to robustly recover the posterior distributions of all the cosmological parameters, compared to the
accurate solver, CLASS.

4 Conclusions

In this work, we have introduced a new method for accelerating the computation of the 3D matter
power spectrum. The emulator is around 300 times faster compared to the full simulator and this can
further be increased if leveraging better hardware. We have shown that the different weak lensing
power spectra can also be computed and we have showcase one application of the emulator to a
Bayesian inverse problem in cosmology. This work can be used further in other applications, for
example, in the case where we want to use the Hamiltonian Monte Carlo (HMC) sampler, which
requires derivatives. The latter is also important in the calculation of the Fisher information matrix.
Moreover, methods such as approximate inference based on Taylor series expansion also demand
for derivatives, which can be computed in a fast way, as shown in this work. A challenging problem
might be in scaling this method but techniques such as Robust Bayesian Committee Machine (rBCM)
can be explored (Deisenroth & Ng, 2015). The code and documentation for this work are available at
https://github.com/Harry45/emuPK and https://emupk.readthedocs.io/ respectively.

Broader Impact

Current weak lensing surveys only cover part of the sky and with the development of data-intensive
surveys such as the KiDS (de Jong et al., 2013), Vera C. Rubin Observatory (Almoubayyed et al.,
2020), Euclid (Laureijs et al., 2011), HSC (Aihara et al., 2018) and DES Abbott et al. (2016) which
will cover a large part of the sky, the tool developed in this work can easily be integrated in future weak
lensing data analysis pipelines. Moreover, N-body simulation codes are generally very expensive and
the method behind the approximate model can be used to model the Universe.
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Figure 3: Marginalised posterior distributions of the five cosmological parameters. The blue color
refers to the posterior distribution of the parameters as inferred using CLASS and the broken red
contours refer to the posterior distribution when using the emulator developed in this work. The black
dots correspond to the fiducial point in parameter space where the data have been generated.
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