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Abstract

Thermophotovoltaics (TPVs) rely on selective thermal emitters to tailor the black-
body radiation at high temperatures into band-matching emission for photovoltaic
cells, resulting in power-conversion efficiencies surpassing the Shockley-Queisser
limit. The selectivity of the thermal emitter must cover three orders of magni-
tude range of wavelengths, spreading from visible to the far infrared, which re-
quires the superposition of multiple transformation theories of optics and degrees
of freedom anisotropic geometries. It is extremely challenging to realize such
high-dimensional complex metasurface design using conventional computational
photonics. Here we develop a deep neural network-based Bayesian optimization
(DeepBO) framework to screen a 16-dimensional design space of 1043 candidates,
and realize a record-high spectral efficiency of 69% for the TPV emitter. We show
that the neural network combined with Bayesian linear regression is an efficient
and robust surrogate model which scales linearly with the size of data. We also
reveal the underlying physical mechanisms of the geometric design of the TPV
emitters using principal component analysis (PCA). We anticipate the DeepBO
framework is a useful tool for data-intensive complex geometric design for pho-
tonics research community.

1 Introduction

Metasurfaces are sub-wavelength metal/dielectric structures that resonantly couple to the incom-
ing electromagnetic fields [1]. The amplitudes, phases, and polarization states of the photons can
be tailored in a customizable manner, enabling applications in quantum-optical processors, energy
harvesting, sensing, communications, etc. The most critical feature of the metasurfaces is the high
degrees of freedom in geometric inhomogeneity. However, the high-dimensional design space poses
significant challenges for the structural design.

Integrating deep learning framework [2] with Maxwell solver is an effective method for the photonic
design of the high-dimension metasurfaces. Intensive research has been done in this field. However,
there are still two main issues. The first issue is the discretization of the design space. The design
space is usually formulated into discretized unit pixels or voxels with fixed geometries so that they
can be used as input (labels) for neural networks. This would degenerate the search space into a
slice of the free-form continuous design space. The second issue is the lack of underlying physical
mechanisms in deep neural networks. The generative neural network often produces fancy but unre-
alistic patterns which are not manufacturable. It is urgent to develop physics-informed framework
for photonic design in continuous space.
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Herein we realize a Deep neural network-based Bayesian Optimization (DeepBO) framework to
design a thermal emitter in the continuous high-dimensional space to modulate the electromagnetic
radiation for thermophotovoltaic (TPV) energy conversion. More importantly, through primary com-
ponent analysis (PCA), we identify the underlying physics of the spectral characteristic control of
the complex metasurfaces.

2 The DeepBO Framework

Figure 1: Design pipeline of the DeepBO. (A) The schematics of the thermal emitter and the 16-
dimensional feature space. (B) Framework of DeepBO. The deep neural network is connected to
a Bayesian linear regression, which gives the predicted distribution of the TPV efficiency in the
feature space.

2.1 Design space

Our design of the thermal emitter, as illustrated in Figure 1A, is a three-layer periodic grating struc-
ture transferred from 3-d to 2-d and described by the feature vector [h, d, a1, b1, a2, ...], which lists
all the parameters of each possible candidate in a 2-d unit cell. This simplifies a three-dimensional
case to a two-dimensional one by using the symmetries of two orthogonal polarizations. Parameter
ai(i = 1, 2, ..., 7), ranging from 0 µm to 0.5 µm continuously, denotes the width of each tungsten
strip, while bi(i = 1, 2, ..., 7) with the same range is the length of the gap separating the neighboring
tungsten strips, forming the first layer: a superposition of multi-fold periodic tungsten gratings, and
the upper limit of the superposition is 7. The height of the tungsten strip is denoted by h, which
ranges from 0 µm to 0.3 µm continuously. Parameter d denotes the thickness of SiO2 layer ranging
from 0 µm to 3 µm continuously, which composes the second layer under the grating structure. The
bottom layer is an opaque tungsten substrate. If we regard 1 nm as the discrete unit of the ranges, a
design space with 50014 ∗ 300 ∗ 2000 ≈ 1043 candidates in total is formed.

2.2 Pipeline

The figure of merit (FOM) is defined as the TPV efficiency:

η =

∫ λband gap

0
bb(λ)ϵ(λ)λ/λband gapdλ∫∞

0
bb(λ)dλ

,

where λband gap is the wavelength corresponding to the band gap of the PV, ϵ(λ) is the emissivity of
the design at the wavelength λ, and bb(λ) is the intensity of the blackbody radiation at the working
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temperature of the TPV. In our case, λband gap = 2.254 nm, ϵ(λ) is calculated by FDTD simulation,
and the working temperature is 1673K.

The DeepBO framework (Figure 1B) combines a deep neural network (NN) with the Bayesian linear
regression (BLR) as the surrogate model. The NN, which takes the feature vector [a1, b1, a2, ..., h, d]
of a design as input and the predicted TPV efficiency as output, is trained by a randomly probed
set as a priori. The BLR performs a probabilistic linear regression based on the trained NN, and
predicts a posterior distribution of the efficiency to the design space [3]. The POI algorithm is used
to balance exploration (the highest uncertainty) and exploitation (the highest predicted value). We
probe the predicted optimal design using FDTD Maxwell solver. The probed mapping between the
design feature vector and FOM is appended to the training set a priori. The procedure loops until a
satisfied design is eventually found.

3 Result

Figure 2A shows the history of the maximum efficiency with respect to the number of optimization
loops. The spectral efficiency of the optimal structure is 0.69, which, to our best knowledge, is the
highest spectral efficiency for the TPV emitters [4] [5]. The whole optimization process takes ca.
50 hours on a moderate desktop workstation with 56-Core 3.2 GHz CPU and 128 GB memory. We
terminate the optimization process after 1400 loops as the maximum efficiency plateaus.

Figure 2B shows the comparison between the asymptotic time costs of DeepBO and Gaussian pro-
cess (GP)-based BO from sklearn. It can be clearly observed that the time for each loop in DeepBO
increases linearly with the training loop, while the time for each loop in GP-based BO increases
cubically as GP has a computational complexity up to O(n3), where n is the number of known data
points. The surrogate model in DeepBO consists of NN and BLR. The NN is used to perform the re-
gression task, then the BLR is applied on the last hidden layer of the network to obtain a distribution
of the regression result. As a reduced version of GP, the BLR is much less expressive than GP.

Moreover, the NN-BLR surrogate model in DeepBO offers higher accuracy and efficacy than GP.
Figure 2C and 2D show the predicted mean value and distribution given by GP and NN-BLR along
SiO2 thickness, from the training set (Figure 2C) and the first 5 probed points (Figure 2D). The
well trained NN in DeepBO fits the data more accurately, and even in the worst case the regres-
sion accuracy of NN in DeepBO will not lose out to GP. Compared with conventional deep neural
network-based surrogate models, NN-BLR outputs the distribution of the regression results rather
than a fixed value, which could provide more possibilities for exploration when sampling. The
speed, accuracy and efficacy of NN-BLR makes DeepBO a powerful framwork for data-intensive
geometric design.

Figure 2: The performance of DeepBO. (A) Optimization history of the TPV efficiency. (B) Time
per loop for DeepBO and GP-based BO. (C) Regression comparison of the trained surrogate model
in GP-based BO and DeepBO. (D) The first five predicted probing points and their distribution given
by GP-based BO and DeepBO.
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4 Underlying Physical Mechanism

We further perform principal component analysis (PCA) on the 16-dimensional design space to re-
veal the physical mechanisms of the optimal structure which holds the record of the highest spectral
efficiency of TPV emitters so far.

Figure 3: The PCA results on the search data set.

Since our model is periodic, a cyclic permutation on {ai} and {bi} gives exactly the same design.
To make sure the parameters in PCA are physically meaningful, the feature vectors are cyclically
permuted such that the largest ai is in the position of a1 before the PCA, while the positions of h, d
remain the same. The regulated feature vector is denoted by [h, d, a′1, b

′
1, a

′
2, . . .].

To explain the dynamic learning procedure, PCA is performed on the search set filtered by different
thresholds of efficiency, as shown in Figure 3. The thresholds are: (A) efficiency > 0.50, 94% of
training set, (B) efficiency > 0.60, 61% of training set, (C) efficiency > 0.66, 30% of training set.
The first column in Figure 3 shows the projection of the filtered sets on the plane spanned by the first
(x-axis) and second (y-axis) principal components, while the second column shows the projection
on the plane spanned by the the first (x-axis) and least (y-axis) components. The third column shows
the PCA components of each chosen data set, each row symbolizes a PCA component, the i-th row
corresponding to the i-th principal component.

When the PCA is performed on the whole search set (Figure 3A), the data points distribute in a
broad range, which demonstrates sufficient exploration over the entire design space. According to
the range set of the parameters, if the data set is chosen uniformly, the variance in the d direction
will be the largest, while the variance in a′1 and b′1 should be the least. The result of PCA shows
the component with the largest variance is the direction of d, while the components with the least
two variances is the direction of a′1 and h. The order of variances calculated by the range setting
agrees with the order of the principal components. The data set is composed with a wide range
of low-efficiency points and a cluster of high-efficiency points, demonstrating a balance between
exploration and exploitation.

When the efficiency threshold is higher, the variance in the d direction becomes lower. Meanwhile,
the variance along a′1 succeeds h to be the least component (Figure 3B). When the efficiency thresh-
old is further increased to 0.66 (Figure 3C), the least three components are a′1, h and d, i.e., the
distribution of high-efficiency points along this directions is narrow, indicating a′1, h and d are key
parameters of our model. Therefore, the performance of the TPV emitter is the most sensitive to the
width and height of the largest tungsten strip, which corresponds to the surface plasmon polaritons,
as well as the thickness of the SiO2 layer, which corresponds to magnetic polaritons.
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5 Conclusion

DeepBO innovatively combines the two state-of-the-art tools of black-box function fitting and opti-
mization together, to achieve both accuracy and calculation efficiency in finding an optimal design of
complicated material systems. The most suitable situation to use DeepBO is when the design space
is extremely data-intensive. In this work, DeepBO proves its power by achieving a record design of
TPV emitter, providing a new way of thinking to the global optimization of physical devices.
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