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Abstract

Astronomical data is full of holes. While there are many reasons for this missing
data, the data can be randomly missing, caused by things like data corruptions or
unfavourable observing conditions. We test some simple data imputation methods
(Mean, Median, Minimum, Maximum and k-Nearest Neighbours (kNN)), as well
as two more complex methods (Multivariate Imputation by using Chained Equa-
tion (MICE) and Generative Adversarial Imputation Network (GAIN)) against
data where increasing amounts are randomly set to missing. We then use the im-
puted datasets to estimate the redshift of the galaxies, using the kNN and Random
Forest ML techniques. We find that the MICE algorithm provides the lowest Root
Mean Square Error and consequently the lowest prediction error, with the GAIN
algorithm the next best.

1 Introduction

Astronomical data sets often contain missing values. There are many different causes for the missing
values: In a single survey, data can be missing due to incomplete observations, recording problems,
data corruptions, instrument limitations or unfavourable observing conditions. When multiple sur-
veys are combined together, data can be missing due to varying survey depths, or that some objects
are not present in one of the surveys. Traditionally, samples with missing values are either ignored
or the values replaced with the mean or minimum/maximum of the data set. The former means a
large fraction of the data are often ignored in a data analysis task for astronomical data sets. The
latter introduces large errors in the missing value, and consequently errors in the analysed results.

With the growing popularity of deep learning, several deep learning methods for data imputation has
been introduced in the literature (Pereira et al., 2020; Yoon et al., 2018; Shang et al., 2017; Lee et al.,
2019) that take advantage of the generative nature of these methods. In this work, we investigate
one of these methods, Generative Adversarial Imputation Network (GAIN; Yoon et al., 2018) — in
an initial study on standard datasets, we found GAIN to be most computationally efficient among
existing Generative Adversarial Network (GAN) based algorithms, with only a slight degradation
on performance. For comparison, we contrast two other popular Machine Learning (ML) data impu-
tation methods, k-Nearest Neighbours (kNN) and Multivariate Imputation by using Chained Equa-
tion (MICE; S. van Buuren, 2000).

We examine the effect of missing data imputation on redshift estimation. For most aspects of science,
knowledge of an astronomical source’s redshift is an essential indicator of the distance and age
of the source. Ideally, this redshift is measured directly using spectroscopy, however, for large
astronomical surveys, spectroscopy data will not be available. Previously, Luken et al. (2021)1
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Figure (1) The SED of the extragalactic source ATLAS3_J033402.4-281418C, taken from the
ATLAS DR3. The background shows the filter coverage used by this work, with the “+" in the
foreground representing the measured photometry at each band. The wavelengths being measured
are along the x-axis, with the left-y-axis showing the normalised flux response of the filters being
measured, and the right-y-axis showing the brightness of the source in each band.

performed an in-depth study of using two popular ML methods to estimate the redshift of radio
galaxies, where traditional redshift estimation techniques like template fitting have been shown
to struggle (Norris et al., 2019). In this work, we investigate the accuracy of estimated redshift
using imputed data at various missing rates, and compare their results against the estimation from
non-imputed data.

2 Methods

2.1 Data set

This work uses the same data as that described in (Luken et al., 2021). The data set comprised of
1311 objects from the Australia Telescope Large Area Survey (ATLAS; Norris et al., 2006; Franzen
et al., 2015) radio continuum catalogue. In addition to the radio flux measured using the Australia
Telescope Compact Array, the data set contains spectroscopic redshift measurements (Yuan et al.,
2015; Childress et al., 2017; Lidman et al., 2020) measured primarily using the Anglo-Australian
Telescope, g, r, i and z optical magnitudes measured using the Dark Energy Camera at the Cerro
Tololo Inter-American Observatory (Dark Energy Survey Collaboration et al., 2016), and 3.6, 4.5,
5.4 and 8.0 µm infrared flux measurements measured using the Spitzer Space Telescope (Lonsdale
et al., 2003). All attributes were standardised to N (0, 1). The data are available online2 , with an
example Spectral Energy Distribution (SED) demonstrated in Figure 1.

The data is partitioned randomly into two sets: using 70% of the full data set for training, and the
remaining 30% as test data. We quantise the redshift values into 15 redshift bins for classification,
with equal numbers of sources in each. The test data are used for both imputation and classification
prediction. We applied different missing rates — 2%, 5%, 10% 15%, 20%, 25% and 30% — to the
test data , randomly removing a percentage of the data. The same imputed test data is then used
for prediction using different classification methods. The experiment was repeated 100 times using
different random seeds in order to estimate the variance in the results. This random sampling has
the added effect of ensuring that the distributions of galaxies in the training and test sets are even.

2https://github.com/kluken/Redshift-kNN-2021, GPL-3.0 License.
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2.2 Data imputation algorithms

The simplest way for data imputation is to replace the missing value with a value of some summary
statistics. In this work, we tested imputation with mean, median, minimum and maximum values
of individual attributes. We calculate the median value for a data set with even number of samples
as the mean between the two middle data points.

In k-Nearest Neighbours (kNN) data imputation, the distance between two samples are calculated
using the features without missing values. Euclidean distance was used in this work. The missing
values are imputed using the mean value from k nearest neighbours in the data set.

Multivariate Imputation by using Chained Equation (MICE) performs data imputation by filling
the missing values multiple times. The algorithm initialises all missing value with the mean of their
respective attribute. Each attribute’s missing values are then estimated as a regression problem using
the other attributes in the data set as the independent variables. The cycle is repeated multiple times.
We repeated the cycle 10 times, which is the general practice.

Finally, we tested Generative Adversarial Imputation Network (GAIN) (Yoon et al., 2018),
where the generator’s aim is imputation, and the discriminators goal is to distinguish between ob-
served and imputed components. The generator is designed to maximize the discriminators misclas-
sification rate, whereas the discriminator’s aim is to minimize the classification loss. The GAIN
architecture also provides the discriminator with additional information in the form of hints, which
ensures that the generator generates samples according to the true underlying data distribution.

2.3 Machine learning algorithm

Luken et al. (2021) performed regression and classification on the data set using both kNN with three
different distance metrics and Random Forest (RF) algorithms. These authors concluded that for this
data set, kNN with Mahalanobis distance has the best regression and classification performances.
Therefore, for this work, we concentrated our evaluation using this specific algorithm. We also
evaluated the performance using RF as a comparison.

The kNN algorithm (Cover and Hart, 1967) computes a similarity matrix between all sources based
on sample attributes through some distance metric. Using the similarity matrix, the kNN algorithm
finds the kN most similar sources (where kN was optimised using kf -fold cross-validation), and
takes either the mean value (for regression) or the mode class (for classification) of the sources’
redshift as the estimated redshift for each source.

The Mahalanobis distance metric (Mahalanobis, 1936) normalises the variance and covariance of
the input features by transforming the features using the inverse of the covariance matrix, S. The
Mahalanobis distance, d(p⃗, q⃗) between two feature vectors p⃗ and q⃗ is:

d(p⃗, q⃗) =
√
(p⃗− q⃗)TS−1(p⃗− q⃗). (1)

The value of kN used in the kNN in this work is optimised using k-fold (where k is hereafter kf
and is set to 10 for this work) cross-validation. For regression, we tested all integer values of kN
between 3 and 23, and for classification we tested all odd integer values between 3 and 43.

RF (Morgan and Sonquist, 1963) is an ensemble ML method, where a set of Decision Tree (DT)
are built through bootstrpping. Each DT is given a slightly different training data. This leads to
a diversity of trees in the ensemble, which contribute to robustness of the model as a whole. The
optimum number of trees is determined through k-fold cross-validation.

2.4 Performance metrics

The error metric used for imputation performance is Root Mean Square Error (RMSE). To calculate
the RMSE, we mask out any data points in the test data set that is not a missing value, and only
calculate the difference between the predicted value and the actual value.

The primary error metric for the redshift estimation is the η0.15 outlier rate:

η0.15 =
count(|zspec − zphoto| > 0.15× (1 + zspec))

Number Of Sources
, (2)
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Figure (2) Results at different percentages of missing data. (A) The RMSE of each of the impu-
tation methods. The y-axis is in log scale to emphasis the different results. (B) The outlier rate
(defined in Equation 2) of the kNN Regression (filled markers) and Classification (hollow markers),
tested on the different datasets created by the different imputation methods on the test data. Also
shown on B is the outlier rate using the test set without missing data. All markers are set to the mean
of the test, with error bars representing ±1 standard deviation.

where zspec is the estimated redshift and zphoto is the measured redshift of a source. The η0.15 outlier
rate is a percentage representing the number of ‘catastrophic failures’, and is commonly found in
literature (Luken et al., 2021, and references therein).

2.5 Software

This work makes use of the Scikit-learn Python package (Pedregosa et al., 2011) for the implementa-
tion of kNN algorithms. We also used MICE3 and GAIN4 implementations from GitHub. The code
used in this work is available on Github5

3 Results

3.1 Imputation Results

Error rates of the imputed datasets at different missing rates are shown in Figure2A. All tests show
the same trend over the different missing rates. This is due to the training method utilised – the
training/test split was completed before the test data were blanked. Therefore, the training data
remains the same for all tests, ensuring that differences in the final prediction errors quoted are
entirely due to the missing data in the test sample, and not potentially contaminated by errors in the
training set as well.

The MICE algorithm performs best (RMSE ≈ 0.05 ± 0.01) across all missing rates, followed by
the GAIN (RMSE ≈ 0.08 ± 0.02) and kNN (RMSE ≈ 0.1 ± 0.01) algorithms. The simple Mean
(RMSE ≈ 0.13 ± 0.01), Median (RMSE ≈ 0.14 ± 0.01), Minimum (RMSE ≈ 0.34 ± 0.02) and
Maximum (RMSE ≈ 0.77± 0.04) imputation all perform progressively worse.

3https://github.com/farrajota/benchmark_mice_algorithms, MIT License.
4https://github.com/jsyoon0823/GAIN, Apache License, Version 2.0.
5https://github.com/kluken/Redshift_Imputation, GPL-3.0 License.
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The opposite was true for the time taken6, where at 15% missing data rate, the Mean, Median,
Minimum and Maximum were imputed effectively instantly, followed by the kNN algorithm (≈
1.69± 1.12 s), GAIN algorithm (≈ 123.86± 11.55 s), and MICE algorithm (≈ 871.6± 202.68 s).

3.2 Prediction Results

Figure 2B (Right) shows the prediction error (the Outlier Rate, defined in Equation 2) using kNN.
Results using RF have similar trend, hence omitted here for brevity. At low missing rates (2–5%),
the outlier rates are similar to the baseline using imputed data from MICE and GAIN, although
higher levels of missing data result in higher outlier rates.

The prediction error follows the imputation results – the lowest outlier rates are achieved using
datasets where the imputation methods achieved the lowest RMSE. In all cases, the classification
outlier rates very closely followed the regression outlier rates, with the classification outlier rates
often being marginally lower, although well within the error bars.

Looking at classification-based models predicting the datasets where 15% of the test set was set
to missing, which has a baseline of 6.54±1.36%. The MICE-imputed dataset performed best
(10.31±1.72%), followed by the GAIN-imputed dataset (16.9±3.72%) and kNN-imputed dataset
(26.6±2.95%). As with the imputation results, the Median (31.19±2.84%), Mean (32.99±2.85%),
Minimum (42.46±3.56%) and Maximum (56.72±4.31%) datasets performed the worst.

4 Conclusion and Future Work

Astronomical surveys are of most use when their catalogues are cross-matched with other surveys
at different wavelengths. However, most astronomical surveys contain missing data for a variety
of reasons, including brightness limits or issues/errors recording data for some reason. While the
former is common, this work only looks at the case where data is missing at random – where the
data has not been able to be recorded correctly. Future work will look at the case where astronomical
sources are too faint to be seen at particular wavelengths, and will look at including additional data
where the redshift is not known.

This work finds that in this case, the MICE algorithm performs best at recovering the missing values,
resulting in both a lower RMSE and final outlier rate. Using the MICE algorithm results in accept-
able redshift estimates (where ≈ 10% of the estimates are defined as outliers) where up to 15% of
the data is missing. The GAIN algorithm has potential with slightly higher prediction errors but at
1/7 the running time for the imputation. However, it likely under-performed due to the small sample
size. The kNN algorithm and other simple methods performed poorly in both imputation error and
most importantly redshift estimation error, and should not be used going forward.

Future work will include incorporating alternative training methods, including training on imputed
data, and training including astronomical sources without a measured redshift, and testing the impu-
tation methods on datasets containing real missing values.
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