Amortized Bayesian inference of gravitational waves
with normalizing flows

Maximilian Dax Stephen R. Green
MPI for Intelligent Systems, MPI for Gravitational Physics,
72076 Tiibingen, Germany 14476 Potsdam, Germany
maximilian.dax@tuebingen.mpg.de stephen.green@aei.mpg.de
Jonathan Gair Jakob H. Macke
MPI for Gravitational Physics, MPI for Intelligent Systems,
14476 Potsdam, Germany 72076 Tiibingen, Germany
Alessandra Buonanno Bernhard Scholkopf
MPI for Gravitational Physics, MPI for Intelligent Systems,
14476 Potsdam, Germany 72076 Tiibingen, Germany
Abstract

Gravitational waves (GWs) detected by the LIGO and Virgo observatories encode
descriptions of their astrophysical progenitors. To characterize these systems,
physical GW signal models are inverted using Bayesian inference coupled with
stochastic samplers—a task that can take days for a typical binary black hole.
Several recent efforts have attempted to speed this up by using normalizing flows to
estimate the posterior distribution conditioned on the observed data. In this study,
we further develop these techniques to achieve results nearly indistinguishable from
standard samplers when evaluated on real GW data, with inference times of one
minute per event. This is enabled by (i) incorporating detector nonstationarity from
event to event by conditioning on a summary of the noise characteristics, (ii) using
an embedding network adapted to GW signals to compress data, and (iii) adopting
a new inference algorithm that makes use of underlying physical equivariances.

1 Introduction

Since 2015, the LIGO and Virgo gravitational-wave observatories [1, 2] have together detected signals
from over 50 mergers of black holes and/or neutron stars [3H5]. Given a detection, the data are
compared against theoretical predictions using Bayesian inference to characterize the system. In this
study we focus on inference of binary black hole (BBH) mergers, as these are most common and
have shorter observable signals than mergers involving neutron stars.

Signal models take the form of time-series waveform predictions h(f) as a function of system
parameters 6 (including the black-hole masses and spins, the orientation of the binary, and its
localization in space and time). These are made on the basis of Einstein’s theory of general relativity.
To this is added detector noise n, assumed to be stationary and Gaussian to a good approximation
[although, importantly, the noise power spectral density (PSD) S, can vary from event to event]. This
gives the data generative process (or likelihood) p(d|6, S,), where d = h(#) + n. Combined with a
prior, Bayes’ theorem gives the posterior distribution over parameters,

p(d|8, Sh)p(0)
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where the normalization factor p(d|S,) is the Bayesian evidence.

Standard codes for gravitational-wave inference [0, [7]] use stochastic methods such as Markov chain
Monte Carlo (MCMC) to draw samples from the posterior. Typically, ~ 10% posterior samples
are desired, which requires millions of likelihood evaluations (waveform simulations). Even using
highly optimized models, this can take days per event. With an ever-increasing event rate due to
improvements in detector sensitivity, the computational cost of analyzing all events is becoming very
significant.

Many studies have attempted to address the challenges of GW inference using machine learning [8-
15]]. These approaches all give fast inference, but the challenge remains to produce accurate and
complete results competitive with conventional algorithms. The present extended abstract (a workshop
version of [[16]) describes an approach that finally moves beyond proof-of-concept by producing
results nearly indistinguishable from conventional algorithms. We build upon a previous study [12]
by some of us using neural posterior estimation (NPE) [17] with conditional normalizing flows to
estimate the GW posterior. However, we now achieve full amortization of training costs across
observations by accounting for detector noise nonstationarity from event to event. We also introduce
an embedding network to treat the high-dimensional GW data sets, and we develop a new algorithm to
incorporate model equivariances into our framework. We demonstrate our approach (called “DINGO”)
by analyzing eight GW events from the first Gravitational-Wave Transient Catalog (GWTC-1) [3],
achieving excellent quantitative agreement with standard codes. Inference on each event with a
fully-trained network takes approximately one minute.

2 Method

DINGO trains a flexible conditional density estimator ¢(6|d, S,) to approximate p(6|d, Sy). We use a
normalizing flow [I8H20], to define ¢(6|d, S,) via a mapping fg s, : u — 6 from a standard-normal
“base” distribution N(0, 1) (u),

q(0|d, S,) = N'(0,1)P (f;;n(e)) ‘det Jis

d,Sy
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where D = 15 is the dimension of the parameter space. This is simply the change-of-variables rule
for probability distributions. fg g, is chosen to be invertible with simple Jacobian determinant, so
q(0]d, S,) can be rapidly evaluated and sampled from. Our basic approach is based on that of [12],
and we now highlight the main improvements; for further details see [[16].

2.1 Noise conditioning

Noise in GW detectors is to a good approximation stationary and Gaussian. However, it does vary
to some degree from event to event, and this must be taken into account for inference at the desired
accuracy. The noise PSD is typically estimated from signal-free detector data in the vicinity of an
event, and it enters into conventional analyses via the likelihood. For NPE, we use the PSD to whiten
the strain data before passing it to the flow. However, as shown in [16]], this is not sufficient to fully
account for PSD drifts, since information is lost if the PSD is discarded after whiteningﬂ We resolve
this problem by providing the PSD as additional context information to the flow.

Past studies applying similar approaches to GWs [[8H15] used a fixed PSD for training. In this study,
we augment our training data with a collection of PSDs estimated during LIGO/Virgo observing runs
(~ 10° PSDs per detector). These are drawn randomly during training, and are used to generate noise
realizations that are added to simulated signals. At inference time, the estimated PSD at the time of
the event is provided as context along with the signal data.

2.2 Embedding network

We represent data in the frequency domain since this is the natural representation for stationary
Gaussian noise PSDs. For 8 s waveforms (suitable for BBHs), and frequencies between 20 and

'For instance, when working with whitened data, scaling the PSDs in all detectors with an overall factor o>
has an effect equivalent to scaling the luminosity distance dy, by «. If no information about the PSD is provided
to the inference network this degeneracy impedes correct inference of d ..



1024 Hz, we have 24,096 (real) input dimensions per detector. This must be heavily compressed
using an embedding network before conditioning the flow. We first apply a linear layer to project the
data to 400 components per detector. To provide an inductive bias to extract signal information, we
initialize this with the principal components [obtained via a singular value decomposition (SVD)] of
clean waveforms from our training set. Implementing the SVD compression with a learnable layer
(instead of a fixed projection as done in previous works) allows the inference network to learn a more
useful representation while retaining the inductive bias provided by the SVD initialization. Following
this, a fully-connected residual network [21] compresses to 128 features.

The flow itself is a composition of 30 rational-quadratic spline coupling flows [22], each of which is
made up of 5 two-layer residual blocks, and is conditioned on the output of the embedding network.
The embedding network and flow are trained alongside each other.

2.3 Group equivariant neural posterior estimation

One of the main performance impediments encountered in our experiments had to do with estimating
the time of binary coalescence ¢; measured in each detector /. The relative time of arrival of the
signal in each detector is related through triangulation to the sky position of the source, and we also
infer the overall time of coalescence at geocenter, so the prior includes training data with varying
t7. In frequency domain, time translations correspond to local phase shifts, which, although well
understood, can be challenging for neural networks to learn based on simulations alone. Indeed, this
occupied much of the network capacity in [[12].

If we had precise knowledge of ¢; then we could manually time shift the data to a fixed coalescence
time to simplify the task of the network. However, t; = ¢;(#) is a function of the parameters 6,
which are a priori unknown at inference time. Our new approach—called group equivariant neural
posterior estimation (GNPE) [23]—resolves this problem. GNPE is a general method that enables to
self-consistently apply #-dependent transformations to observational data d despite unknown 6. As
discussed in detail in [23]], this can be used to integrate exact equivariances of a forward model by
construction, and also allows for approximate equivariances.

In the context of GW parameter inference GNPE works as follows. For each 6-dependent variable ¢y
we define a proxy

tr=tr1(0)+¢, €~ ke 3)

as a perturbed version of ¢;. We choose a narrow, uniform kernel x = U[—1 ms, 1 ms] for the

perturbation e, therefore the proxy #; is a good approximation of ¢;. With that definition, we aim to
sample from the extended posterioxﬁ

where # is a short hand notation collecting the proxies 7; for all detectors . Samples from @) can be
easily turned into samples 6 ~ p(f|d) from the desired posterior by simply marginalizing over £ (i.e.,
dropping the corresponding axes). As becomes apparent below, it is easier to learn a representation
of the extended posterior p(6, £|d) than to directly learn p(6|d), since the inference network for the
extended posterior can be trained on GW data with (almost) no time shifts.

With GNPE, we infer the extended posterior with Gibbs sampling [24} 25]. Specifically, we
iteratively sample 6 and ¢ conditioned on the respective other parameter as well as on d,

t~p (f|d, 6) — t=t0)+e e~ rle), (5)
0 ~p(0)d,1) = 0 ~q(0ld_st). (6)
Here the left-hand side describes the sampling operation and the right-hand side how it is performed in
practice. While sampling # for given @ in (3] is trivial with its definition (3], we employ a normahzlng

flow ¢ in (6) to estimate p (0|d t) and sample #. Importantly, due to the conditioning on  (and the

invertibility of time shlfts) we can time shift the strain data by —¢ before providing it to the flow,
which we denote with d_;. The normalizing flow is thus trained with simulations with almost no

time shift, since t; — t7 is restncted to the range [—1 ms, 1 ms] of the kernel . We found that this
re-alignment of the data d is crucial for the accuracy of the flow.

2For readability, we leave the conditioning of the posterior on the PSD S,, implicit in this subsection.
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Figure 1: Comparison of GW 150914 posterior distributions produced by LALINFERENCE MCMC
(blue) and DINGO (orange). Contours represent 50% and 90% credible regions. Panel (a) shows the
chirp mass M, mass ratio g, and two effective spin parameters Xefr, Xp; (b) shows the sky position.

Iterative application of (3)) and (6) results in a Markov chain that asymptotically converges to the
extended posterior (@). In practice, we speed up convergence by constructing N Markov chains to
obtain N samples in parallel. We initialize each of these by sampling from a flow ¢(¢;|d) trained
with standard NPE to infer initial ¢; estimates. From each of the NV Markov chains we extract only
the final sample. As shown in [23]], this significantly improves the convergence behaviour, such that
only ~ 30 GNPE iterations are required.

Training
The GNPE inference network is trained by minimizing the loss
L = Ep0)Ep(s,) Ep(aio,s.) Erie) [—108  (01d_(t(6)+e), Sn 1(0) +€)] . @)

Estimating (7) requires sampling #() ~ p(#) and S~ p(S,), and then simulating data d(*) ~

p(d|6®, Sr(f)). We choose a prior suitable for BBH systems, with uniform component masses
my, mg € [10,80] Mg, luminosity distance d;, € [100,6000] Mpc, and standard uninformative
priors for sky position, orientation, and spins. We train separate networks for detector noise levels
in the first (O1) and second (02) observing runs of LIGO and Virgo, with PSD samples estimated
empirically from noise data [26]. As in [12], training data are generated from a fixed set of spin-
precessing frequency-domain waveforms, described by the IMRPhenomPv2 [27H29] model, but with
extrinsic parameters and noise realizations drawn randomly during training. We train for 450 epochs
using the Adam optimizer [30], and reserve 2% of the training data for validation. With training sets
of 5 x 10% waveforms, there is no indication of overfitting. Training takes between 16 and 18 days
on a single NVIDIA Tesla V100. We use PyTorch [31] and nflows [32] for the implementation
of our neural networks. The plots are generated with ChainConsumer [33] and 1igo . skymap [34].
All software used in this project is freely available under MIT or BSD license.

3 Results

We evaluate DINGO on all GWTC-1 events with component masses greater than 10 Mg (our
prior bound). For all events, we use the data from the two LIGO detectors for the analysis; for
GW170814 (the first 3-detector event) we additionally use data from the Virgo detector. We compare



Table 1: Deviation between DINGO and LALINFERENCE posteriors, quantified by the Jensen-
Shannon divergence (JSD) between 1D marginals. We report the mean JSD across all parameters, and
the maximal JSD, including the corresponding parameter. All JSDs are reported in units of 10~ nat.

event mean JSD max JSD event mean JSD max JSD
GW150914 0.6 1.4 (6) GW170809 0.9 5.5 (9)
GWI151012 0.7 2.7 (mq) GW170814 1.0 2.5 (@)
GW170104 1.0 6.4 (m1) GW170818 1.3 3.8 (o)
GW170729 1.3 6.3 (dr) GW170823 0.4 0.9 (dp)

against MCMC posteriors produced using the standard LIGO/Virgo parameter estimation code
LALINFERENCE [6]. For DINGO, generation of 50,000 sample points with 30 GNPE iterations takes
roughly 1 minute. A qualitative comparison for the first GW detection is displayed in Fig.|l| showing
excellent overlap.

For quantitative comparisons, we compute the Jenson-Shannon divergence (JSD) [35] between
1D marginalized posteriors, a divergence which lies between 0 and In(2) ~ 0.69 nat. Across all
events and parameters we find a mean JSD of 0.0009 nat, which is only slightly higher than the
variation (0.0007 nat) found between LALINFERENCE runs with identical settings but different
random seeds [37]. Moreover, for GW samplers, a maximum JSD across parameters of 0.002 nat is
regarded as indistinguishable [37/]]; our results approach this, with two events below for all parameters,
and the others with one to three parameters above; see Tab. E} For comparison, variations in the PSD
and the choice of waveform model [37] both impact the JSD at a much higher level of ~ 0.02 nat.

4 Conclusions

In this work, we achieved unprecedented accuracy for rapid GW parameter inference using normaliz-
ing flows. We analyzed eight GWTC-1 events, and showed excellent agreement with standard codes,
with inference times reduced by over three orders of magnitude. This improvement in performance
compared to past studies was achieved by conditioning on the noise PSD, introducing a powerful
embedding network, and using the novel GNPE algorithm to simplify the learning task by aligning
the signal waveforms in each detector. The latter is a general approach to treating equivariances,
which we hope will be useful in other inference applications as well.

The present study is limited to analyzing BBH systems, with relatively simple waveform models, and
with stationary Gaussian noise. To extend to longer signals for binary neutron stars and more complex
signals incorporating more physics [38] will require somewhat larger networks and improved data
representation or compression. DINGO should scale better than conventional algorithms to expensive
waveforms since generation of training data can be fully paralellelized. Moreover, as a likelihood-free
method, it does not impose any fundamental restrictions on the noise model and should ultimately
reduce systematic errors of current analyses (although in this study we used stationary Gaussian noise
to compare against conventional samplers). We plan to address these limitations in future studies.

Deep learning is now able to analyze the vast majority of LIGO/Virgo events at comparable accuracy
to standard algorithms. Through future extensions we expect that DINGO could become one of the
leading approaches to GW inference.
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