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Abstract

Reconstructing spectral functions from Euclidean Green’s functions is an important
inverse problem in physics. The prior knowledge for specific physical systems
routinely offers essential regularization schemes for solving the ill-posed problem
approximately. Aiming at this point, we propose an automatic differentiation
framework as a generic tool for the reconstruction from observable data. We
represent the spectra by neural networks and set chi-square as loss function to
optimize the parameters with backward automatic differentiation unsupervisedly.
In the training process, there is no explicit physical prior embedding into neural
networks except the positive-definite form. The reconstruction accuracy is assessed
through Kullback–Leibler(KL) divergence and mean square error(MSE) at multiple
noise levels. It should be noted that the automatic differential framework and
the freedom of introducing regularization are inherent advantages of the present
approach and may lead to improvements of solving inverse problem in the future.

1 Introduction

The numerical solution to inverse problems is a vital area of research in many domains of science. In
physics, especially quantum many-body physics, it’s necessary to perform an analytic continuation of
function from finite observations which however is ill-posed [1, 2, 3]. It is encountered for example,
in Euclidean Quantum Field Theory (QFT) when one aims at rebuilding spectral functions based on
some discrete data points along the Euclidean axis. More specifically, the inverse problem occurs
when we take a non-perturbative Monte Carlo simulations (e.g., lattice QCD) and try to bridge the
correlator data points with physical spectra [2, 3]. The knowledge of spectra will be further applied
in transport process and non-equilibrium phenomena in heavy ion collisions [2, 4]. Moreover, the
inverse problem of rebuilding spectral function is not unique to strong interaction many-body systems,
but have similar counterparts in quantum liquid and superconductivity [1].
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Related works In past two decades, the most common approach in such reconstruction project
is Bayesian inference which is a classical statistical learning method. It comprises the extra prior
knowledge from the physical domain about the spectral function, so as to regularize the inversion
task [2, 5, 6]. For example, as two of axioms, the scale invariance and proper constant form prior
are both embedded into the Bayesian approach with Shannon-Jaynes entropy, which is termed
as maximum entropy method (MEM) [4, 6]. Besides, recent several studies have investigated
reconstructing spectral functions through a neural network [7, 8, 9, 10, 11]. In a supervised learning
framework, the prior knowledge is encoded in amounts of training data and the inverse transformation
is explicitly unfolded through a training process [7, 8, 9]. To alleviate the dependence of redundant
training data, there are also studies adopting the radial basis functions and Gaussian process [11, 12].

2 Problem statement

Our inverse problem set-up is based on a Fredholm equation of the first kind, which takes the
following form,

g(t) = K ◦ f :=

∫ b

a

K(t, s)f(s)ds, (1)

and the problem is to reconstruct the function f(s) given the continuous kernel function K(t, s) and
the function g(t) . In physical systems, g(t) is always available in a discrete form. When dealing
with a finite set of data points with finite uncertainty, the inverse transform becomes ill-conditioned
or degenerated [9, 13]. In other words, the formal inversion is not a stable operation.

Källen–Lehmann(KL) spectral representation Henceforth in the paper, we discuss the unique-
ness and accuracy of the spectral function by building the Källen–Lehmann(KL) representation [14],

D(p) =

∫ ∞
0

K(p, ω)ρ(ω)dω ≡
∫ ∞
0

ω ρ(ω)

ω2 + p2
dω

π
. (2)

Mock spectral functions are constructed using a superposed collection of Breit-Wigner peaks based
on a parametrization obtained directly from one-loop perturbative quantum field theory [3, 7]. Each
individual Breit-Wigner spectral function is given by,

ρ(BW)(ω) =
4AΓω

(M2 + Γ2 − ω2)
2

+ 4Γ2ω2
, (3)

here M denotes the mass of the corresponding state, Γ is its width and A amounts to a positive
normalization constant. The multi-peak structure is built by combining different single peak modules
together.

3 Methods

In this section, we demonstrate vectorized formalism of our methodology which can be easily
implemented by differential programming in Pytorch or other frameworks. For simplicity we take
one Np point for D(p) observation as example. One can directly extend it to multiple data points by
making summation over them in calculating the gradients.

Spectral representations we develop 3 architectures with different levels of non-local correlations
among ρωi to represent the spectral functions with artificial neural networks(ANNs). The fist form
is List, it is equivalent to set L = 1 without bias node, meanwhile, the differentiable variables are
~ρ = [ρ1, ρ2, · · · , ρNω ] as Figure 1 left panel a) shown. If one approximates the integration over
frequencies ωi to be summation overNω points at fixed frequency interval dω, then it is suitable to the
vectorized framework. The second representation is named as NN, in which we use L-layers neural
network to represent the spectral function ρ(ω) with a constant input node a0 = C and multiple
output nodes aL = [ρ1, ρ2, · · · , ρNω ]. The width of the l-th layer is nl, in which the correlation
among discrete outputs is contained in a concealed form. The last way is to set input node as a0 = ωi
and single output node as aL = ρi. It is termed as point-to-point neural networks (NN-P2P), in
which the continuity of function ρ(ω) is a regularization defined in domains of input and output.
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D(p) ≡ ∫
∞

0
K(p, ω)ρ(ω)dω

χ2 =
Np

∑
i=1

(Di − D(pi))2

δDi

BP
Forward

a) List

b) NN
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Figure 1: Automatic differential framework to reconstruct spectra from observations. Different
architectures of representing spectrum with neural networks: a) List. 1-layers neural network which
is equivalent to the list of spectrum. b) NN. L-layers neural networks and the output is list of spectrum.
c) NN-P2P. L-layers neural networks and the end-to-end nodes are (ωi, ρi) pairwise.

Automatic differentiation The output of above representations is ~ρ = [ρ1, ρ2, · · · , ρNω ], from
which we can calculate the correlator as D(p) =

∑Nω
i ~ρ �K(p, ~ω) with ~ω = [ω1, ω2, · · · , ωNω ],

where ‘�’ represents element-wise product. After the forward process, we can get both ~ρ and Loss
L = χ2 =

∑Nτ
i (Di −D(pi))

2/D(pi), where Di is observed data at pi with Np points. To optimize
the parameters of presentations {θ} with loss function, we implement the backward propagation (BP).
The gradients for layer-l is ∂L

∂θ[l]
= ∆[l] and the input for backward propagation is,

∆[L] =
∂L

∂D(p)
K(p, ~ω). (4)

With iteration loops in backward direction the gradients, ∆[l] = θ[l+1]>∆[l+1]�σ′(Z [l]) can be used
to optimize parameters {θ}, where ‘>’ represents the transpose, θ[l] is weights matrix at layer-l, Z [l]

is output of layer-l and σ(·) is the corresponding activation function.

Optimization strategy The components of the framework are differentiable and therefore amenable
to gradient descent. Due to the feasibility of regularizers in neural network representations, the
optimization makes use of the Adam algorithm [15] with weight decay1. In training process, we obey
an annealing strategy which is setting a tight regularization at beginning and loosen it repeatedly
in fist 20000 epochs. The weight decay rate set as 10−4 and learning rate is 10−3 for all cases.
The smoothness regularization contributed to loss function is written as λs

∑Nω
i=1(ρi − ρi−1)2.

Tight initial regularization is λs = 10−2. Besides the existing regularization of neural network
itself, the only physical prior we enforce into the framework is the positive-definiteness of hadron
spectral functions, which is introduced through using Softplus activation function at last layer as
Softplus(x) = log(1 + ex). It should be mentioned that the biases induced by using gradient
descent-type optimizers are not avoided in our framework, but it could be improved by embedding
ensemble learning strategies.

1Weight decay is equivalent to L2 regularization in stochastic gradient descent(SGD) when re-scaled by the
learning rate [16].
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4 Numerical Results
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Figure 2: Performance of rebuilding correlation functions in two samples. The insert figures are
showing absolute errors between observed correlation functions and the rebuilt.

In this section, to demonstrate the performance of our framework, we prepare two profiles of
spectral functions from Eq. 3. In Figure 2, the left correlation function is from a single peak
spectrum with A = 1,Γ = 0.3,M = 2.0 and the right hand-side is from double peak profile
with A1 = 1, A2 = 1.5,Γ1 = 0.4,Γ2 = 0.5,M1 = 2.5,M2 = 5.0. Three representations are
marked by green, blue and red dots, which are plot in high consistencies with observed correlators.
Besides, to imitate the real-world observable data, we add Gaussian-type noise into mock data with
D̃(pi) = D(pi) + noise and noise = N (0, ε). The reconstruction absolute error reaches 10−6

magnitude in all representations in the case with noise = 10−6. The corresponding rebuilt spectral
functions are list in following Figure 3.
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Figure 3: The predicted spectral functions from NN, List and NN-P2P. For left to right panels,
different Gaussian noises are added to the correlation data with ε = 0.001, 0.0001 and 0.00001.

Three representations are marked by green, blue and red lines in Figure 3. They all show remarkable
reconstruction performances for single peak case at noise level >0.0001. In which, List and NN
behave oscillations around zero-point under different noise backgrounds. The rebuilding spectrum
from NN-P2P do not oscillate even with noise smaller than 0.0001. This is especially important for
such a task of extracting the transport coefficients from real-world lattice calculation data. Although
the List representation has intense oscillations in double peak data, it successfully unfold the two
peaks information from correlators even with noise ε = 0.001.

To assess the reconstruction performance quantitatively, we introduce MSE and Kull-
back–Leibler(KL) divergence for rebuilt spectra q and the ground truth p as DKL(P‖Q) =∫∞
0
p(ω) log (p(ω)/q(ω)) dω. At multi-magnitude noises, the NN-P2P keeps consistent perfor-

mances compared with the other two representations. Although it misses the second peak which may
appear in the case of bimodal, the calculations of different order momentum from spectral function
will not be disturbed. Intuitively speaking, in NN-P2P representation, there are series of 1-order
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Figure 4: Evaluation to the reconstruction with KL divergence and MSE on mock data sets. Red
triangle marks the NN-P2P, blue circles are NN representation and green cube labels the List.

differentiable modules between input ω node and output ρ node, in which the continuity of function
ρ(ω) is naturally preserved. It makes the NN-P2P has a better performance in single peak case but
failed in reconstructing double peaks which needs a looser restriction.

5 Conclusions

We present an automatic differentiation framework as a generic tool for unfolding spectral functions
from observable data. The representations of spectra are used with 3 different neural network architec-
tures, in which the modern optimization algorithm will be naturally employed. Although the inverse
problems cannot be fully-solved in our framework, the remarkable performances of reconstructing
spectral functions suggest that the framework and the freedom of introducing regularization are
inherent advantages of the present approach. In future works, we will explore more neural network
representations and a potential direction is to design specific neural networks with physics rules.
This new paradigm provides us with a practical toolbox, in which solving inverse problem transfers
into designing proper representations of solutions. It may lead to improvements in solving actual
problems in e.g. optics, material design, and medical imaging.
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