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Abstract

Machine learning methods have enabled new ways of performing inference on
high-dimensional datasets modeled using complex simulations. We leverage recent
advancements in simulation-based inference in order to characterize the contribu-
tion of various modeled components to γ-ray data of the Galactic Center recorded
by the Fermi satellite. A specific goal here is to differentiate “smooth” emission, as
expected for a dark matter origin, from more “clumpy” emission expected for a
population of relatively bright, unresolved astrophysical point sources. Compared
to traditional techniques based on the statistical distribution of photon counts, our
method based on density estimation using normalizing flows is able to utilize more
of the information contained in a given model of the Galactic Center emission,
and in particular can perform posterior parameter estimation while accounting for
pixel-to-pixel spatial correlations in the γ-ray map.

1 Introduction

Dark matter (DM) represents one of the major unsolved problems in particle physics and cosmology
today. The traditional Weakly-Interacting Massive Particle (WIMP) paradigm envisions production
of dark matter in the early Universe through freeze-out of dark sector particles weakly coupled to the
Standard Model (SM) sector. In this scenario, one of the most promising avenues of detecting a dark
matter signal is through an observation of excess γ-ray photons at ∼ GeV energies from DM-rich
regions of the sky. The Fermi γ-ray Galactic Center Excess (GCE), first identified over a decade
ago [1–4] using data from the Fermi Large Area Telescope (LAT) [5], is an excess of photons in
the Galactic Center with properties—such as energy spectrum and spatial morphology—broadly
compatible with expectation due to annihilating DM [6, 7].

The high dimensionality of γ-ray data has traditionally necessitated a description of the photon map
in terms of hand-crafted summary quantities e.g., the probability distribution of photon counts [8, 9]
or a wavelet decomposition of the photon map [10–13], in order to enable computationally tractable
analyses. While effective, this reduced description necessarily involves loss of information compared
to that contained in the original γ-ray map. On the other hand, recent developments in machine
learning have enabled analysis techniques that can extract more information from high-dimensional
datasets. Machine learning methods have recently shown promise for analyzing γ-ray data [14] and
specifically for understanding the nature of the Fermi GCE [15–17].
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1 Introduction

u ⇠ ⇡(u) = N (u; 0, 1)
Your introduction goes here! Simply start writing your document and use the Recompile button

to view the updated PDF preview. Examples of commonly used commands and features are listed

below, to help you get started.

Once you’re familiar with the editor, you can find various project setting in the Overleaf menu,

accessed via the button in the very top left of the editor. To view tutorials, user guides, and further

documentation, please visit our help library, or head to our plans page to choose your plan.

2 Some examples to get started

2.1 How to create Sections and Subsections

Simply use the section and subsection commands, as in this example document! With Overleaf, all

the formatting and numbering is handled automatically according to the template you’ve chosen. If

you’re using Rich Text mode, you can also create new section and subsections via the buttons in the

editor toolbar.

2.2 How to include Figures

First you have to upload the image file from your computer using the upload link in the file-tree menu.

Then use the includegraphics command to include it in your document. Use the figure environment

and the caption command to add a number and a caption to your figure. See the code for Figure 1 in

this section for an example.

Note that your figure will automatically be placed in the most appropriate place for it, given the

surrounding text and taking into account other figures or tables that may be close by. You can find

out more about adding images to your documents in this help article on including images on Overleaf.

2.3 How to add Tables

Use the table and tabular environments for basic tables — see Table 1, for example. For more infor-

mation, please see this help article on tables.

Item Quantity

Widgets 42

Gadgets 13

Table 1: An example table.
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Figure 1: A schematic overview of the inference framework used in this work. A normalizing flow
is used to model posterior distribution of the parameters of interest characterizing the contribution
of point source populations as well as diffuse (“smooth”) components to the γ-ray data. The flow
transformation from the base distribution to the posterior is conditioned on learned summaries of the
γ-ray map extracted using a convolutional neural network. The normalizing flow and feature-extractor
neural networks are trained simultaneously using maps simulated from the forward model. Once
trained, samples from the flow can be generated conditioned on a new dataset of interest in order to
obtain an estimate of the corresponding parameter posteriors, which can be used to infer physical
quantities of interest such as source-count distributions of modeled PS populations as well as fluxes
associated with the diffuse components.

Here, we showcase a complementary approach that leverages recent developments in simulation-
based inference (SBI, also referred to as likelihood-free inference; see, e.g., Ref. [18] for a recent
review) in order to weigh in on the nature of the GCE. In particular, we use conditional density
estimation techniques based on normalizing flows [19, 20] to characterize the contributions of various
modeled components, including “clumpy” PS-like and “smooth” DM-like emission spatially tracing
the GCE, to the γ-ray photon sky at ∼ GeV energies in the Galactic Center region. Rather than using
hand-crafted summary statistics, we employ a graph-based convolutional neural network architecture
(previously utilized in Refs. [15, 16]) in order to extract summary statistics from γ-ray maps optimized
for the downstream task of estimating the distribution of parameters characterizing the contribution
of modeled components to the GCE. Unlike traditional approaches based on the statistics of photon
counts, this approach lets us capture more of the information contained in a model of the Galactic
Center emission, and in particular implicitly uses the distribution of correlations between pixels as
an additional discriminating handle. As we show in our extended paper [? ] alongside more details
on the analysis pipeline and validation tests on simulated data, this fact makes our method more
resilient to certain systematic uncertainties associated with model misspecification in real Fermi data.
A schematic illustration of our method is presented in Fig. 1.

2 Model and inference

The forward model We use the datasets and spatial templates from Refs. [21, 22] to create
simulated maps of Fermi data in the Galactic Center region. The maps are spatially binned using
the HEALPix [23] pixelization scheme with resolution parameter nside=128, roughly corresponding
to pixel area ∼ 0.5 deg2. The inner region of the Galactic plane, where the observed emission is
especially difficult to model, is masked at latitudes |b| < 2◦, and a radial cut r < 25◦ defines our
region of interest (ROI).
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The simulated maps are a combination of diffuse (alternatively referred to as smooth or Poisso-
nian) and PS contributions. The smooth contributions include (i) the Galactic diffuse foreground
emission [24], (ii) spatially isotropic emission accounting for, e.g., uniform emission from un-
resolved sources of extragalactic origin, (iii) emission from resolved PSs included in the Fermi
3FGL catalog [25], and (iv) lobe-like emission associated with the Fermi bubbles [26]. Finally,
(v) Smooth DM-like emission is modeled using a line-of-sight integral of the (squared) generalized
Navarro-Frenk-White (NFW) [27, 28] profile, ρgNFW(r) ∝ (r/rs)

−γ
(1 + r/rs)

−3+γ with inner
slope γ = 1.2 motivated by previous GCE analyses [29, 6, 30]. The total smooth component is
obtained as a Poisson realization of a linear combination of these spatial templates.

Assuming the locations of individual PSs are not known a-priori, the statistics of multiple PS
populations can be completely specified through (i) their spatial distribution, described by templates
T p discretized over pixels p, (ii) the distribution of expected photon counts S contributed by each PS,
p(S), and (iii) the distribution of the number of PSs for each population. Additionally, the modeled
instrumental point-spread function quantifies the spatial distribution of photon counts sourced by
individual PS around its location due to the finite angular resolution of the instrument. Here, we
parameterize the distributions of photon counts S contributed by each PS through a doubly-broken
power law specified by the break locations {Sb,1, Sb,2}, spectral indices (slopes) {n1, n2, n3}, and
appropriately normalized to unity. Together, we denote these parameters by θPS.

The PS components of the simulated Fermi map are created as follows, practically implemented
using the code package NPTFit-Sim [31]. The total number of PSs to be simulated is drawn as
n ∼ Pois(n | npixλ), where npix is the number of pixels in the ROI. The sample of PS angular
positions is drawn from a PDF constructed by linearly interpolating the relevant pixel-wise spatial
template T p; {rn} ∼ p(r) ∝ T (r). The expected number of photons emitted by each PS, indexed
by i, is drawn by sampling from the mean source-count distribution, S ∼ p (S | θPS), and scaling
to correct for non-uniform exposure of the satellite. The actual sample of photon counts emitted
by the simulated PSs, {xn}, is taken to be a Poisson realization of this expectation. The procedure
is repeated for each PS population, and the final simulated PS map is constructed by binning the
sampled photon positions within the ROI according to the pixelization scheme used. The total map is
obtained by combining the simulated diffuse and PS components. The inclusion of PSs in the forward
model introduced a large number of latent variable—the positions and fluxes associated with each
PS—and renders the full likelihood of the model intractable.

Modeled PS populations are often compactly described through the so-called source-count distribution
(SCD) dN/dS, which quantifies the differential number density of sources per unit angular area
(more formally d2N/dSdΩ, although we leave the area dependence implicit) emitting S photons
in expectation. The source-count distribution jointly describes the distribution of photon counts
from individual PSs p(S | θPS) and their mean per-pixel abundance λ, and is related to these as
dN/xdS = λ p(S | θPS)/Ωpix where the the pixel area Ωpix is used to convert the per-pixel source
count to per-area, agnostic to pixel size. We will present our results in terms of the source fluxes
dN/dF , with the conversion S = 〈ε〉F where 〈ε〉 is the mean exposure in the region considered.
Two PS populations are modeled—(i) those correlated with the GCE, following an NFW profile, and
ii those tracing the Galactic disk, spatially modeled using a doubly exponential profile.

The forward model is thus specified by a total of 18 parameters—6 for the overall normalizations of
the Poissonian templates, and 6× 2 parameters modeling the source-count distributions associated
with GCE-correlated and disk-correlated PS populations {〈SPS〉, n1, n2, n3, Sb,1, Sb,2}. 〈SPS〉
denotes the mean per-pixel counts contributed by a given PS population, and parameterizes their
overall abundance.

Inference with likelihoods based on simplified data representations The 1-point PDF (proba-
bility distribution function) framework, first introduced in the context of γ-ray analyses in Ref. [32]
and extended in Refs. [8, 9] under the name of non-Poissonian template fitting (NPTF), considers
a simplification of the problem by computing the pixel-wise likelihood assuming each pixel to
be statistically independent (1-point then referring to values over individual, independent spatial
positions in the sky). This significantly reduces the latent space dimensionality by eliminating the
positions of individual PSs as latent variables, localizing them within a pixel and modulating their
expected abundance by the modeled spatial template (e.g., GCE-correlated or disk-correlated in our
case). Here, we use this method as a comparison point, and sample the posterior associated with
parameters of interest with dynesty [33] using the likelihood from NPTFit [22].
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Figure 2: Results of the baseline analysis on real Fermi data. (Top row) Analysis using neural
simulation-based inference with normalizing flows, and (bottom row) using the 1-point PDF likelihood
implemented in the non-Poissonian template fitting (NPTF) framework. While moderate preference
for a PS-like origin of the GCE is seen in the case of the NPTF analysis (bottom), the simulation-based
inference analysis attributes a smaller fraction of the GCE to PS-like emission (top).

Extracting representative features from γ-ray maps Rather than relying on hand-crafted data
summaries, a neural network is used to extract representative features sϕ(x) of the data x optimized
for the downstream density estimation task. We use the DeepSphere architecture [34–36] with a
configuration similar to and inspired by that employed in Ref. [15]. DeepSphere is a graph-based
spherical convolutional neural network architecture tailored to data sampled on a sphere, and in
particular is able to leverage the hierarchical structure of data in the HEALPix representation. This
makes it well-suited for our purposes. The architecture consists of graph convolutional layers which,
following a ReLU nonlinearity, coarsens the pixel representation by a factor of 4 with max pooling
while doubling the number of feature dimensions until a maximum of 256. The output of the final
convolution layer is passed through a fully connected neural network with 1024 hidden units before
outputting 128 summaries.

Simulation-based inference with normalizing flows Simulation-based inference (SBI) refers to a
class of methods for performing inference when the data-generating process does not have a tractable
likelihood. This is the case for the forward model used here, where the presence of a large number
of PSs leads to a large latent space. We approximate the joint posterior over the parameters of
interest θ given a γ-ray map x through a distribution p̂φ(θ | sϕ(x)) conditioned on summaries sϕ(x)
from simulated samples {x}. The conditioned posterior distribution is parameterized by φ and
defined via normalizing flows [19, 20], which are a class of models that provide an efficient way of
modeling high-dimensional probability distributions. Specifically, we use Masked Autoregressive
Flows (MAFs) [37] to define the flow transformation. We use 8 MAF transformations, each made up
of a 2-layer masked autoregressive neural network [38] with 128 hidden units and tanh activations.
Each transformation is conditioned on summaries sϕ(x) by including these as additional inputs into
the transformation blocks.

Normalizing flows allow for tractable density evaluation, and log p̂φ(θ | sϕ(x)) is used as the training
objective to simultaneously optimize parameters {φ, ϕ} associated with the convolution and flow
neural networks, respectively. 106 samples from the forward model are produced, with 15% of
these held out for validation. The model is trained for up to 30 epochs with early stopping, using a
batch size of 256. The AdamW optimizer [39, 40] is used with initial learning rate 10−3 and weight
decay 10−5, with learning rate decayed through cosine annealing. Experiments were performed on
RTX8000 GPUs at the NYU Greene computing cluster.
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3 Application to Fermi data

We apply our neural simulation-based inference pipeline to the real Fermi dataset. As a point of
comparison, we also run the NPTF method on the data using the same spatial templates and prior
assumptions as those used in the corresponding SBI analyses. The results of the NPTF analysis
are shown in the bottom panel of Fig. 2. The left column shows the median (solid lines) as well
as middle-68/95% containment (dark/light shaded regions) of the posteriors on the source-count
distributions F 2dN/dF of GCE-correlated (red) and disk-correlated (blue) PSs, evaluated point-wise
in flux F . The dashed grey vertical lines correspond to the flux associated with a single expected
photon count per source (below which Poissonian and PS-like emission is expected to be perfectly
degenerate) and the approximate 1-σ threshold for detecting individual sources (below which the
degeneracy is often observed in practice [41, 24]). The middle column shows the posteriors on
various modeled emission components. The right column shows the joint posterior on the fraction of
DM- and PS-like emission in proportion to the total inferred flux in the ROI.

Consistent with previous 1-point PDF studies using a similar configuration, a significant fraction
of the GCE—55.0+8.8

−22.9%–is attributed to PS-like emission. The top panel of Fig. 2 shows results
using the neural simulation-based analysis pipeline introduced in this paper. Although posteriors
for the astrophysical background templates are seen to be broadly consistent with those inferred in
the NPTF analysis, the preference for PSs is somewhat reduced in this case, with 37.9+8.9

−19.2% of the
GCE emission being PS-like.

4 Discussion

We have leveraged recent advances in neural simulation-based inference in order to jointly characterize
a putative DM-like signal and PS population associated with the observed Fermi Galactic Center
Excess. While broadly consistent with results of the traditional method, our method shows a reduced
preference for PS-like emission correlated with the GCE. In our extended work Ref. [? ], we
present additional details of our analysis, including a validation of the pipeline on simulated data
as well as a discussion of the impact of model misspecification within our framework. We show
there that, owing to the fact that it can extract more information from the forward model, our
method can be less sensitive to certain forms of model misspecification compared to traditional
approaches. Although a direct comparison is difficult, our results are broadly consistent with and
complementary to those obtained in Ref. [16], which used a DeepSphere-based architecture which
was, in contrast to our parametric approach, combined with a novel neural network-based non-
parameteric approach to infer the counts distributions associated to PS populations using histograms
with modeled uncertainties [42].

As in any Galactic Center γ-ray analysis, we caution of the potential of unknown systematics, such
as mismodeling on the scale of the size of the LAT point-spread function, to bias the results and
conclusions of our analysis. Although machine learning-based analyses can utilize more of the
information encoded in the forward model, and in particular in the present case can take advantage of
pixel-to-pixel correlations, this can also make them more susceptible to specific modeled features
compared to traditional techniques based on data reduction to hand-crafted data summaries. We leave
a more detailed investigation of the impact of these effects to future work.

Code used for reproducing the results presented in this paper is available at https://github.com/
smsharma/fermi-gce-flows.
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