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Abstract

Stokes inversion techniques are very powerful methods for obtaining information
on the thermodynamic and magnetic properties of solar and stellar atmospheres.
Most of the existing inversion codes are designed for finding the optimum solution
to the nonlinear inverse problem. However, to obtain the location of potentially
multimodal solutions, degeneracies, and the uncertainties of each parameter from
the inversions, algorithms such as Markov chain Monte Carlo require to evaluate
the model thousand of times. Variational methods are a quick alternative by
approximating the posterior distribution by a parametrized distribution. In this
study, we explore a highly flexible variational method, known as normalizing flows,
to return Bayesian posterior probabilities for solar observations. We illustrate
the ability of the method using a simple Milne-Eddington model and a complex
non-LTE inversion. The training procedure need only be performed once for a
given prior parameter space and the resulting network can then generate samples
describing the posterior distribution several orders of magnitude faster than existing
techniques.

1 Introduction

Through the analysis of spectra and their polarization, we have been able to infer the properties of
the solar and stellar atmospheres. To infer the stratification of physical properties as a function of
depth, we compare the emergent spectra given by a solar model using the radiative transfer theory
with observations. This process is commonly known as spectropolarimetric inversion and nowadays
is routinely used in solar physics. The traditional way for finding the optimum solution is the use
of a gradient search minimization algorithm to drive the solution in the direction of the minimum
difference between the forward calculated spectrum and the observed one.

To have complete knowledge of the parameter space (the location of the global minimum if it exists,
whether there are degeneracies or multiple solutions that can equally reproduce the observations, and
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to have a proper estimation of the uncertainty in the solution), the posterior probability distribution
has to be calculated [2]. However, computing the posterior turns out to be complex and one has to rely
on efficient stochastic sampling techniques such as Markov Chain Monte Carlo (MCMC; [19]) which
require many forward calculations and are therefore computationally very costly. This is especially
relevant in non-local thermodynamic equilibrium (NLTE) cases, for which the forward problem is
computationally heavy and highly non-linear. Carrying out an inference of a standard observation with
millions of pixels requires the use of supercomputers running parallelized inversion codes for many
hours [e.g.,[14]. A very promising alternative method for Bayesian inference is variational inference,
where the true distribution of the solution is approximated. In this study, we use an advanced method
for approximating probability distributions known as normalizing flows [26} 22 [7,|13] and perform
Bayesian inference for the physical atmospheric parameters from spectroscopic data.

2 Normalizing flows

Normalizing flows can approximate the posterior distribution p(8|x) by transforming a simple proba-
bility distribution p,(z) into a complex one by applying an invertible and differentiable transformation
0 = f(z). In practice, we can construct a flow-based model by implementing f = f, with a neural
network with parameters ¢ and take the base distribution p. (z) to be simple, typically a multivariate
standard normal distribution. When these transformations are conditioned on the observations, they
can approximate the posterior distribution of any observation. More precisely, the resulting proba-
bility distribution after the transformation is computed by applying the change of variables formula
from probability theory [23]]:
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where the first factor represents the probability density for the base distribution (p,) evaluated at
f(b_1 (6) and the second factor is the absolute value of the Jacobian determinant and accounts for the
change in the volume due to the transformation. Normalizing flows can be trained by minimizing the
negative log-likelihood with respect to the parameters of the flows ¢ for each pair of example (6;, x;)

in the dataset of size D: L, = —% Zf)zl log ps(6;|x:). This loss is typical in "neural posterior
estimation”, one of the goals of simulation-based inference [3]. Among the different families of
transformations, we use a widely-used transformation known as "coupling spline flows" which has
been demonstrated to be effective at representing complex densities, fast to train, and fast to evaluate
[[7,120L 8]]. Tt consists on a family of differentiable functions that are invertible and very expressive
based on monotonically increasing splines. We use the implementation of normalizing flows in
PyTorch [21] available in nflows [9]. We have used an architecture that is a concatenation of blocks
of an invertible linear transformation using the LU-decomposition [[16] with a rational-quadratic
spline transform [RQ, |8] where a residual network [ResNet,|11]] is used to calculate the parameters of
the splinesﬂ For the first simple case, a flow with 5 coupling transformations, 5 residual blocks, and
32 neurons per layer was enough. In the second case, we need at least 15 coupling layers, 10 residual
blocks, and 64 neurons per layer. We trained the models for 500 epochs with a batch size of 100. We
have used a learning rate of 10~ and the Adam optimizer [15]], reserving 10% of our training set for
validation.
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3 Simple case: Milne-Eddington atmosphere

As a first example, we show the capabilities of the normalizing flows in a case where the forward
model is fast enough to allow comparison with a MCMC method. For this case, we choose the Milne-
Eddington solution [[1] of the radiative transfer problem as a baseline. Focusing only on Stokes I, 8
is five-dimensional: the macroscopic velocity vr,og, the Doppler width Avp, the line-to-continuum
opacity ratio 79, and the two parameters of the source function Sy and S;. The normalizing flow is
trained using 10 training pairs (6;,x;) by drawing 8; from an extended uniform prior for all the
variables. We have simulated the photospheric Fe 1 6301 5A line using the Milne-Eddington mode
and a Gaussian noise of ¢ = 8 - 10~2 in continuum units. Once the normalizing flow is trained
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Figure 1: Left panel: Joint and marginal posterior distributions for the Milne-Eddington model.
Contours are drawn at 1 and 2 sigmas. Right panel: Atmospheric stratification inferred in the NLTE
case. The orange solution is inferred only using the Fe I line while the brown solution also uses the
Ca1i profile. The shaded regions mark the corresponding 68% confidence interval.

after ~12 hours, we carry out Bayesian inference for arbitrary observations. Given that the flows are
almost 2 orders of magnitude faster than the MCMC, the training for inferring thousands of pixels is
already worth it. To verify the accuracy of the posterior inference we compare the result against a
MCMC computed with the emcee sampler [10] using a Gaussian likelihood. According to the results
shown in the left panel of Fig.[l] both distributions are clearly in very close agreement. For strongly
degenerate parameters (such as Avp and 7)9) we recover the typical joint banana-shaped posterior,
while for highly correlated parameters we find ridge-shaped distributions (like between Sy and S1).
Given these strong degeneracies, an inversion method based on single-point estimations using neural
networks will not perform correctly as there are multiple solutions for the same profile.

4 Complex case: NLTE with stratification

In this second example, we have simulated a case in which we have simultaneously observed the
photospheric Fe1 6301.5A line and the chromospheric Ca1r 8542A line. This configuration is
commonly used to study events occurring both in the photosphere and the chromosphere [28, (14} 6,
29]. It is also one of the most common configurations on the Swedish 1-m Solar Telescope [SST,
24, 25]]. To create a diverse set of samples of solar-like stratifications and intensity profiles, we have
created 10% new stratifications by perturbing the solar stratifications inferred in [6]]. The density and
gas pressure stratifications are computed by assuming hydrostatic equilibrium (HE) and the spectra
were synthesized using the NLTE code STiC [4}5]]. We have then degraded each spectral line to the
spectral resolution of the CRISP instrument and with Gaussian noise with a standard deviation of
10~2 in units of the continuum intensity. The dimensionality of this case is much higher and depends
on the height grid and the number of physical parameters.

We train two different models to capture the difference when more spectral lines are included. The
first model only uses observations of the FeI line, while the second model uses both the Fe1 and
Carl lines together. The trained models are evaluated on a profile with strong emission in the
chromospheric line (right panel of Fig.[I). The top three panels show the stratification with optical
depth of the temperature, line-of-sight velocity, and turbulent velocity. The solid orange and dashed
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Figure 2: Atmospheric structure of the FOV as inferred from the inversion. The left panel shows the
temperature at two layers for half of the FOV. The right panel shows the associated uncertainty for
the same layers.

brown lines show the median value estimated from the posterior distribution when considering only
the photospheric line or both lines, respectively. As expected, the inference that considers both lines
can recover with high accuracy the whole stratification, whereas using only the Fe I line yields a model
where only the photosphere is recovered, with a large uncertainty towards the upper atmosphere. This
result shows that the normalizing flow is able to learn the range of sensitivity of each spectral line
just by looking at the examples of the database.

5 Performance and validation

We have quantified how the accuracy of our models depends on the size of the training set. To
this end, we use the fact that, when the models extracted from the posterior distribution are used
to re-synthesize the line profiles, they should be distributed according to the assumed sampling
distribution (a standard deviation of 8-10~3 and 102 in units of the continuum intensity for the ME
and NLTE case, respectively). These calculations show that the average error of the normalizing flow
model decreases asymptotically with the size of the dataset, reaching the expected error with 103
examples for the Milne-Eddington case while 10° in the complex high-dimensional NLTE case.

We have also explored two possible procedures to reduce the effect of the size of the training set. The
first procedure relies on compression to reduce the dimensionality of the forward model by using
an autoencoder [[12] and it shows that a more compact representation helps the normalizing flow to
train faster and perform better. The second procedure reuses the samples from the normalizing flow
and reweights them using importance sampling to produce a better approximation to the posterior
distribution. This requires to have access to the forward model which is time-consuming in NLTE
cases, but a pre-trained neural network that works as an emulator of the forward model alleviates this
problem.

Finally, we have also tested the trained normalizing flows on large fields of view. For that, we have
chosen the observations analyzed in [17] observed with the SST on 2016-09-19 at around 09:30 UT.
We have applied the neural network to a field of view of approximately 42x42 arcseconds (around
5 - 10° pixels). Spectra from individual pixels are analyzed independently. The normalizing flow was
able to produce the posterior distribution in a few tens of minutes, whereas a standard technique would
have required several days only for a single-point estimate. Figure[2]shows in the left and right panels
the mean stratification and standard deviation. The lower half of each panel shows the temperature at
the photosphere, and the upper half provides a view of the chromosphere. The uncertainties tend to



increase from the photosphere to the chromosphere. The magnitude and uncertainty are correlated
since our spectral lines are less sensitive to higher chromospheric temperatures.

6 Conclusions

In summary, normalizing flows can accurately infer the posterior distribution of a solar model atmo-
sphere (parameters, correlations, and uncertainties) from the interpretation of observed photospheric
and chromospheric lines. Once the normalizing flow model is trained, the inference is extremely fast.
We have also shown that the quality of the approximate posterior distribution depends on the size of
the training set and that applying dimensionality reduction techniques makes the normalizing flow
performs better. As a natural extension of this work, we plan to include the four Stokes parameters
to infer the magnetic properties of our target of interest. Rapid parameter estimation is critical
if complex forward models are used to analyze a large amount of data that the existing and next
generation of telescopes such as the Daniel K. Inouye Solar Telescope [DKIST; 27| and the European
Solar Telescope [EST; (18] will produce.
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