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Abstract

Simulations provide the crucial link between theoretical descriptions and exper-
imental observations in the physical sciences. In experimental particle physics,
a complex ecosystem of tools exists to describe fundamental processes or the
interactions of particles with detectors. The high computational cost associated
with producing precise simulations in sufficient quantities — e.g. for the upcom-
ing data-taking phase of the Large Hadron Collider (LHC) or future colliders —
motivates research into more computationally efficient solutions. Using gener-
ative machine learning models to amplify the statistics of a given dataset is an
especially promising direction. However, the simulation of realistic showers in
a highly granular detector remains a daunting problem due to the large number
of cells, values spanning many orders of magnitude, and the overall sparsity of
data. This contribution advances the state of the art in two key directions: Firstly,
we present a precise generative model for the fast simulation of hadronic showers
in a highly granular hadronic calorimeter. Secondly, we compare the achieved
simulation quality before and after interfacing with a so-called particle-flow-based
reconstruction algorithm. Together, these bring generative models one step closer
to practical applications.

1 Introduction

Particle physics investigates the laws of nature at length scales of 10~'8 meters. Collider experiments
accelerate beams of particles (e.g., protons or electrons) close to the speed of light and bring them
into collision. The resulting interactions are recorded by complex and highly granular detectors and
can be described by the so-called Standard Model (SM). Highly accurate simulations of physics
processes and particle-detector interactions are needed to measure the properties of the SM and look
for potential deviations from it. These simulations are traditionally generated using Monte Carlo
methods. They are significant consumers of computing resources in particle physics, as billions of
examples need to be simulated to match the data produced by experiments.

Generative machine learning models offer a promising way to amplify available statistics [|1,2].
Methods using Generative Adversarial Network (GANs) [3]], Variational Autoencoders (VAE) [4]],
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and autoregressive flows [5] have been investigated for different aspects of this challenge such as
event generation [6-9]], parton showering [[10H12] and detector simulation [[13-21]].

This contribution shows progress on a particular simulation challenge: particle showers caused by
hadrons in a highly-granular hadronic calorimeter. Due to the richer observed structure compared
to particles which interact purely electromagnetically, these offer a larger challenge for generative
models. Furthermore, we interface the showers generated by two different machine learning models
to the standard reconstruction software and obtain a more realistic estimate of the quality of generated
showers. The remainder of this work is structured as follows: Sec.[2]introduces the physics challenges
and training datasets; Sec. [3|discusses the used generative architectures; Sec. [ presents the obtained
results; and Sec. [5|summarises our findings and shows an outlook on future work.

2 Data sets

When a highly energetic particle hits a block of heavy detector material it interacts with this material,
creating a cascade of secondary particles. These secondary particles will themselves interact with the
detector and create further particles. This avalanche continues until all participating particles have
lost their energy. The chain of particle interactions is called a shower. In high energy physics we
record these showers using calorimeters. Current state-of-the-art calorimeters consist of a sandwich
of passive absorber and active sensor. These sensor layers are themselves made up of highly granular
pixel detectors. During a shower the dense absorbers mediate most of the interactions taking place,
while the sensors record highly resolved slices of the developing shower structure. The resulting
measurements consist of the energy values deposited in these individual pixel detectors. As each
pixel has a fixed position in the calorimeter we can project these pixel values into a regular 3D grid,
called a calorimeter image in the following.

While previous work successfully applied generative models to photon showers [20]], here we focus
on so-called pions. Compared to photon showers, pion showers feature a greater range of possible
interactions, resulting in an increased complexity of the shower structure. Specifically, we simulate
the Analogue Hadron Calorimeter (AHCal) of the proposed International Linear Detector (ILD) [22]]
prototype as this is where the majority of the pion interactions will take place. Within the open source
framework iLCSoft [23] we simulate 500k pion showers with energies uniformly distributed between
10 and 100 GeV. This simulation is performed using GEANT4 [24]], the state-of-the-art software
package for shower simulations. The resulting showers are projected onto a 25 x 25 x 48 grid, while
simultaneously being corrected for any potential artefacts arising form this projection.

A sample of the dataset containing Sk showers is provided athttps://doi.org/10.5281/zenodo!
5529677,

3 Generative Models

Two generative models are trained on the same data: a Wasserstein-GAN (WGAN) [25] and a
Bounded Information Bottleneck Autoencoder (BIB-AE [26]) architecture, both based on the archi-
tectures proposed in [20].

For the WGAN architecture, convolutional layers previously used in the critic network are replaced
by 3D-residual blocks [27]], and a fully-connected network is used (instead of convolutional layers) in
the energy constrainer.

Several changes are applied to the BIB-AE to improve its generative performance:

e Minibatch Discrimination and Resetting Critics In addition to the individual samples
we also pass information about the makeup of individual batches to the critics [28]]. This
reduces overfitting and teaches the network global features of the data. Further, critics can
become blind to certain features during training leading to artefacts in the generated data.
Therefore all BIB-AE critics are actually a set of two networks, one trained continuously
and one that is reset every epoch.

e Accurate Latent Space Sampling Ideally, the latent space contains sufficient information
for reconstruction but is regular enough for sampling. In a BIB-AE setup, however, the
adversarial reconstruction makes balancing regularization and reconstruction problematic.
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Therefore, a different latent sampling approach based on a Buffer-VAE [7,29] is employed.
We encode our training data set into latent space examples. From this we can draw new
samples using a Kernel Density Estimator (KDE) [30].

o Improved Post Processing A Post Processor network is used to fine-tune the generated
per-cell energy distribution. The Post Processor is now trained on a fixed BIB-AE model,
instead of in-parallel, and several additional loss terms are added.

Both models were implemented using PYTORCH [31]]. The full code for both models alongside the

hyperparamter settings used in the training can be found on https://github.com/FLC-QU-hep/
neurIPS2021_hadron
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Figure 1: Differential distributions comparing physics quantities between GEANT4 (ground truth)
and the different generative models at generator level. The energy per-cell is measured in MeV for
the bottom axis and in multiples of the expected energy deposit of a minimum ionizing particle (MIP)
for the top axis.
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Figure 2: Mean (ugo, left) and relative width (g0 /1190, right) at the generator and reconstruction
level for pions with various incident energies. In order to avoid edge effects, the phase space boundary
regions of 10 and 100 GeV are removed for the response and resolution studies. In the bottom panels,
the relative offset of these quantities with respect to the Geant4 simulation is shown.
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4 Results

When applying generative networks to particle physics simulations, a correct description of differential
distributions is needed in addition to accurate individual images. This can be done at two different
stages: by directly investigating properties of showers coming form the generators (Generator-level)
or after processing by a dedicated reconstruction software (Reconstruction level).

In Fig. [I| we show three of the relevant distributions at generator level. The first plot shows the energy
contained in a single sensor (visible cell energy, left). In order to reduce electronic noise we only
consider cell-energies above half the energy deposited by a minimal ionizing particle (MIP). This
is indicated by the shaded area in the plot. For high energies both models match this distribution
nicely. In addition, the BIB-AE also manages to capture the feature around 1 MIP, thanks to the post
processing. The second plot shows the total energy sum over all pixels in a shower (center). This is
accurately captured by both models. The final plot shows the distribution of the number of non-zero
pixels (right). For low pion energies, both models describe this property well, however for higher
pion energies the WGAN produces slightly too many hits.

Calorimeters at future e™ e~ colliders provide unprecedented details of particle interactions. The state-
of-the-art pattern recognition algorithm used by ILD is PandoraPFA [32]. It aims at reconstructing all
individual particles created in the event by exploiting the high granularity of the calorimeters such as
the AHCal. The output of this reconstruction algorithm is directly used in all physics analyses. The
accurate description of the distribution of visible and reconstructed energy for a given true incident
pion energy is therefore of great importance.

For evaluation, we use samples of pion showers at discrete energies ranging from 20 to 90 GeV in
10 GeV steps, simulated with GEANT4 and generated with our models. For these sets of showers
we calculate the mean and root-mean-square of the central 90% of the distributions, labeled 199
and og respectively. The results are shown in Fig.[2]as a function of the incident pion energy. For
both models the mean (left) is correctly modelled up to five-percent deviations w.r.t GEANT4 at
the reconstruction and generation level. Deviations in the relative resolution ( ogg / f1gg ) are more
pronounced for both models at the different levels. Note that a calibration factor has been applied to
the WGAN-generated single-energy showers to improve the linearity.

The main motivation for using generative models in particle physics is to reduce the time and cost per
simulated sample. Table[T|shows the time to generate a single shower using GEANT4, the WGAN
and the BIB-AE. Both models offer significant speedups compared to classical generation methods.
Furthermore we also see trade-offs between the models illustrated. While the BIB-AE produces
overall better quality showers than the WGAN, it also offers one order of magnitude less speedup.

The BIB-AE and PostProcessor model were trained using four parallel NVIDIA® V100 GPUs for a
total time of roughly 10 days. The WGAN was trained on two V100 GPUs for 13 days.

Table 1: Computational performance of WGAN and BIB-AE generators on a single core of an Intel®
Xeon® CPU E5-2640 v4 (CPU) and NVIDIA® A100 with 40 GB of memory (GPU) compared to
GEANT4. For the generative models, the best performing batch size is shown and given by the mean
and standard deviation obtained for sets of 10000 showers.

Hardware ~Simulator | Time / Shower [ms] ~ Speed-up

CPU GEANT4 | 2684 + 125 x1
WGAN 47.923 £ 0.089 x 56
BIB-AE 350.824 £ 0.574 x8
GPU WGAN 0.264 + 0.002 x 10167
BIB-AE 2.051 +0.005 %1309




5 Conclusions and Outlook

Fundamental physics is facing growing difficulties from the expansion of computing resources using
slow Monte-Carlo-based simulations. While these simulations encode valuable physical knowledge
and are challenging to replace, better use of generated statistics is possible by using generative models.
In this contribution, we show the performance of a Wasserstein-GAN and BIB-AE architecture on
the challenging task of simulating hadronic showers in a highly granular calorimeter. We observe
accurate modeling of physically relevant quantities over several orders of magnitude and a speed-up
over three orders of magnitude. Furthermore, we also find a good description of key shower properties
after processing the generated samples with a standard reconstruction software.
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URL to a data sample is given in section 2} providing the full set was not possible due
to its size.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] This was not a concern for high energy physics
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