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Abstract

Accurate measures of lightning activity can be used to predict extreme weather
events in advance, saving lives and property. However, the current hand-crafted
filtering algorithm for identifying true lightning events from data captured by
the GLM onboard NOAA’s GOES-R satellites is only 70% accurate, with a 5%
false alarm rate. This work applies unsupervised learning techniques to the large
volume and high temporal resolution GLM dataset in an effort to detect lightning
within raw data signals. We present a novel data processing pipeline for the GLM
Level 0 products and case study comparison of two approaches to dimensionality
reduction and clustering to sort the data by similar patterns. These clusters could
then be labeled by a domain expert to accurately distinguish between noise and
true lightning events. We demonstrate that autoencoders with graph convolution
layers can learn a translationally invariant representation of the dataset which
allows for k-means clustering to group samples that have similar spatiotemporal
patterns together. This is a first step towards building a machine learning pipeline
for improving false event filtering to identify lightning and enhance predictive
abilities in the face of increasingly frequent extreme weather events.

1 Introduction

Lightning flashes can be excellent predictors of severe weather, such as tornadoes, large hail and
high winds. Lightning data is used by meteorologists to warn communities of oncoming severe
weather many minutes in advance, protecting built infrastructure and human lives. The National
Oceanic and Atmospheric Administration (NOAA) currently has two Geostationary Operational
Environmental Satellite (GOES) weather satellites in geostationary orbit that have instruments to
sense optical emissions from lightning-illuminated cloud tops in the Western Hemisphere. This
instrument, known as the Geostationary Lightning Mapper (GLM), captures and records the intensity
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of light that is incident on any camera pixel with a brightness above a certain threshold. Each of these
records is considered a single “event” and is down-linked to receivers on the Earth’s surface to create
the raw GLM Level 0 dataset. Events are recorded every two milliseconds at a fixed wavelength of
777.4 nm [1, 2]. Each pixel corresponds to a region on the Earth’s surface between 8 and 14 km in
length, depending on the distance of that pixel from the nadir [3]. Each event can represent either
true lightning or spurious noise caused by light glinting off of reflective surfaces like lakes, direct
sunlight incident to the camera [4], radiation striking the camera sensors, instrument noise, and other
artifacts. The current Level 1b Ground Processing Algorithms (GPAs) in use by NASA and NOAA,
which use a series of filters based on domain knowledge, can distinguish true lightning events from
these spurious events with an accuracy of approximately 70% with 5% false alarms [2, 5].

This work endeavors to replace the Level 1b GPAs with an unsupervised, data-driven, machine
learning-based approach that can identify true lightning events based on their spatiotemporal patterns.
It has been demonstrated that lightning events tend to occur as a sequence of pulses in a short time
window, and that they tend to be clustered in space around a given storm system [3]. We hypothesize
that unsupervised machine learning algorithms can identify these behaviors in the large dataset
obtained by the GLM sensor, and use these learned trends to identify lightning more accurately
than current methods. We present a two-step unsupervised learning approach that learns a low-
dimensional latent representation of raw GLM Level 0 data, and then clusters the samples in the
resultant latent space. We test two different dimensionality reduction algorithms (autoencoders with
standard convolution layers and graph convolution layers [6]). During our experiments, we found that
the learned representation must be translationally invariant1. All of the code used in this submission
is available on our Gitlab repository2.

2 Methods

2.1 Data

Figure 1: Raw data from GOES satellites. Left:
Field of view for GOES-16. Right: 3D visualiza-
tion of 20 seconds of unfiltered data.

The size of the dataset from the active GLM
onboard the GOES-R satellites is on the order
of tens of terabytes, having been collected since
2017. A sample of raw data is presented in Fig-
ure 1. Given the immensity of the data, we pre-
pared a preliminary dataset from May 18, 2021,
a month characterized by high storm activity
over the contiguous United States (CONUS).
The events that are registered by the GLM sen-
sor are originally stored as a large image cap-
turing the entire disk of Earth. This image is
1300 × 1372 pixels in dimension. The image
was tiled across space and time, with dimen-
sions chosen based on computation time, the
algorithms in use, and spatiotemporal signature of a lightning event, as described below. Domain
experts define a lightning flash as lasting approximately 330ms and extending over tens of kilometers,
so we chose a tile size on this order of magnitude. We filtered each tile, removing isolated events in
either time or space, since they are unlikely to be lightning activity.

As noted above, during experimentation we found that the learned representation of this dataset must
be translationally invariant. The data patching process described here generates patches that contain
groups of possible lightning events, but the location of those groups of events within the image does
not have any real-world significance. We hypothesize that it is the shape of the event groupings that
contains important information about whether they represent true lightning events, not the groupings’
positions within the images. As pointed out by Kayhan and van Gemert and Sun et al., the semantic
information contained within image-based datasets should be invariant to its position within the

1We also tested using the Gromov-Wasserstein distance [7] with k-means clustering and found that it was
translationally invariant as well; however it did not scale well for our large dataset.

2https://gitlab.com/frontierdevelopmentlab/fdl-2021-lightning-upgrade-2-public-facing/lightning-ml4ps-
submission
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images [8, 9]. Thus as we review the results of our work, we will focus on how well each method
was able to learn and sort images in a translationally-invariant fashion.

2.2 2D Convolution

The task of lightning identification (regardless of sensor) suffers from limitations in spatial coverage,
detection efficiency, false alarms and other challenges which makes generating a ground truth dataset
elusive. To compensate, we built a baseline approach that we could use to compare against more
advanced techniques to measure model performance. Our baseline consisted of an autoencoder with
four convolution layers that condense the data to a lower-dimensional latent space (we refer to this
model as Conv-AE). For this model, we tiled the data into images that were 32 pixels × 32 pixels ×
250 frames, which was equivalent to a spatiotemporal window of 320 km × 320 km × 0.5 seconds.
We collapsed all the tiled data across the temporal domain by averaging the event frequency and event
intensity and computing the event intensity standard deviation, and encoding these values for each
pixel as a 3-channel input. We performed a hyperparameter sweep to determine the best parameters
for the convolution layers and the size of the latent space and we present the optimal values in the
next section. We applied a k-means clustering algorithm with Euclidean distance to the latent space.

2.3 Graph Convolution

We hypothesized that a graph-based representation might also be robust to translation. We imple-
mented an autoencoder with two graph convolution network (GCN) layers [6] that together performed
the following graph convolution operation on the input data to obtain the latent representation, Z:

Z = σ(Â ReLU
(
ÂXW (0)

)
W (1)) (1)

where σ(·) is the softmax function, Â = D̃− 1
2 ÃD̃− 1

2 , D̃ is the renormalized degree matrix and W (i)

are the weights of each layer [6]. For this model, we used patches of size 8 pixels × 8 pixels ×
250 frames. These patches were converted to a graph-based representation of the data, G = (A,X)
where A was a 64 × 64 adjacency matrix to encode the spatial arrangement of the events, and X
was a feature matrix containing the same 3 channels of data for each event as used in the image
representation. We performed a hyperparameter sweep to find the optimal values for this model
(referred to as GCN-AE).

3 Experiments

We selected 10,000 sample data patches for our experiments (7,000/3,000 train/test split) [10]. We
tested log normalization but found that non-normalized data provided the best results. We used
tools provided by Weights and Biases [11] to perform hyperparameter sweeps for both of our model
implementations. All work was done on cloud computing resources provided by Microsoft. The data
processing was done on a virtual machine with 32 cores and 128GB of RAM; all model training was
done on a virtual machine with 12 cores, 2 Tesla K80 GPUs and 112GB of RAM. For the Conv-AE,
we found the best parameters were a latent dimension of 64, with a learning rate of 0.001 and a batch
size of 512. Using a similar approach, we found that the optimal parameters for the GCN-AE [6, 12]
were a hidden layer of dimension 32 and a latent dimension of 16, with a learning rate of 0.005 and
dropout of 0.5. The batch size was 128.

4 Results and Discussion

Table 1: Cluster Metrics
Metric Conv-AE GCN-AE

Silhouette score 0.697 0.659
Davies-Bouldin score 0.781 0.586
Calinski-Harabasz score 5066 8240

The latent space learned by Conv-AE is
visualized in Figure 2 [13]. The color-
coding indicates the cluster label applied to
each sample point by a standard k-means
clustering algorithm using Euclidean dis-
tance. We found that the optimal number of
clusters was 3 when testing over the range
{2, 3, ...15}. In both the middle and right
plots, the samples pulled from clusters 1
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Figure 2: Latent space learned by Conv-AE. Left: t-SNE plot of latent space with cluster labels.
Circles indicate sampled regions containing images shown in middle and right subfigures. Middle:
9 samples of cluster 1 (blue) showing very little translation invariance between images. Right: 9
samples of cluster 3 (green) showing all images have events in the same part of the image.

and 3 largely show activity appearing in the same region of the image, although for images of size
32 × 32 there are not necessarily 9 highly similar images in the dataset, which can make direct
comparisons difficult. While examining the results, we found that samples pulled from specific
regions in the t-SNE plot often had similar patterns, and some amount of variation in position in the
image. The separation between clusters is quantified by the evaluation metrics presented in Table 13.

For comparison, the latent space for our GCN-AE is visualized in Figure 3. Again, the color-coding
indicates the label assigned via a standard K-means clustering algorithm with Euclidean distance. We
found that the optimal number of clusters was 3 when testing over the range {2, 3, ...15}. This time,
when we inspected the contents of each cluster, we found that the same cluster contained examples
of similar event patterns in different parts of the image, although it should be noted that it is easier
to find highly similar examples for images of size 8× 8 pixels. In examining our cluster metrics as
shown in Table 1, we found that the silhouette coefficients for both models were about the same, but
the GCN-AE had a lower Davies-Bouldin score (indicating better cluster partitioning) and a higher
Calinski-Harabasz score (indicating more dense and distinct clusters).

Overall, our preliminary findings indicate that both the Conv-AE and GCN-AE models were able
to find a latent representation that could be clustered and displayed some degree of translation

3Note that these metrics are most meaningful when applied to convex clusters and in this context we cannot
guarantee that our clusters meet this requirement, so these metrics may be of limited utility.

Figure 3: Representation of latent space learned by GCN-AE. Left: t-SNE plot of latent space
with cluster labels. Circles indicate sampled regions containing images shown in middle and right
subfigures. Middle: 9 samples of cluster 1 (blue) with translation invariance between images. Right:
9 samples of cluster 2 (red) also demonstrating translation invariance.
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invariance. Our results suggest that the GCN-AE may be better at finding translation-invariant
patterns in the dataset, and it may be better at learning a latent representation which leads to distinct
clusters. However, the GCN-AE is limited to processing smaller images than the Conv-AE because
the adjacency matrix is not a space-efficient representation of the data.

5 Next Steps

In this preliminary work, we identified two approaches to finding spatiotemporal patterns in the
data that are translationally invariant. We now know that this is an important property for any
algorithm designed to distinguish between noise and true lightning events based on identifying
common spatiotemporal patterns in the data. While this approach does not scale well for larger
tiles, our chosen tile size is an appropriate size for capturing a single typical lightning event. One
long-term goal for this work is to provide automated capabilities for accurately predicting lightning
events which could involve applying time-series forecasting approaches such as [14] to this dataset.
We found that even a single day generates an enormous amount of data, so we propose that one way
to scale this approach up would be to use online learning to continuously train a model as data is
received from the GOES satellites.

6 Ethical Considerations

If we consider this work with respect to the dataset presented here, the dataset’s precision is too
coarse (one pixel is 8-14km in length) to represent a threat to the privacy of individuals within the
instrument’s field of view. The dataset is also maintained by NASA and NOAA who are responsible
for maintaining the security of the raw data. This data is unlikely to enable activities that are harmful
to the environment and our primary goal is to predict extreme weather for the benefit of the general
public. It is possible that incorrect predictions based on our data could lead to false alarms or delayed
warnings, but our work is an early prototype and has not yet been implemented in a public system. If
we consider how this work might be applied to other datasets, it is possible that the models we use
here to learn a latent representation could learn discriminating patterns if presented with, for example,
images of faces or other human-related data.
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