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Abstract

Machine learning tools provide a significant improvement in sensitivity over tradi-
tional analyses by exploiting subtle patterns in high-dimensional feature spaces.
These subtle patterns may not be well-modeled by the simulations used for training
machine learning methods, resulting in an enhanced sensitivity to systematic un-
certainties. Contrary to the traditional wisdom of constructing an analysis strategy
that is invariant to systematic uncertainties, we study the use of a classifier that
is fully aware of uncertainties and their corresponding nuisance parameters. We
show on two datasets that this dependence can actually enhance the sensitivity
to parameters of interest compared to baseline approaches. Finally, we provide a
cautionary example for situations where uncertainty mitigating techniques may
serve only to hide the true uncertainties.

1 Introduction
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Figure 1: Uncertainty-aware
architecture.

The usefulness of physical measurements is tied to the magnitude
and reliability of their estimated uncertainties. The most trouble-
some, systematic uncertainties, are often modeled as the dependence
of a parameter of interest on other degrees of freedom, nuisance
parameters.

In high energy physics, machine learning models are typically trained
on synthetic datasets generated with assumed values of the nuisance
parameters. We will refer to this as the baseline approach. Several
approaches have been considered to incorporate uncertainties into
the training. Data augmentation trains a model on a concoction
of synthetic data with different values of the nuisance parameters.
Another possibility is to train a model to explicitly be insensitive to nuisance parameters [1–15], such
as with adversarial training [1–4]. Maximizing overall sensitivity requires a compromise between the
level of independence to nuisance parameters and the classification power. These three approaches
will serve as important baselines in this paper.
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We advocate for the opposite of decorrelation. Classifiers are constructed to be explicitly dependent
on nuisance parameters. As nuisance parameters are profiled, the classifier will change and the best
classifier will be used for each value of the nuisance parameter. Parameterized classifiers have been
studied in the context of parameters or features of interest [16, 17], and full dependence on nuisance
parameters for inference has been advocated in Ref. [18–22].

In this paper, we provide specific examples of profiled classifiers and show explicitly that parame-
terized classifiers can enhance analysis sensitivity over strategies that render networks insensitive
to nuisance parameters. We focus on only the construction of classifiers as useful statistics for
downstream analysis and not on full likelihood (ratio) estimation. In this way, our uncertainty-aware
classifier approach [23] is a straightforward extension of existing analyses performed at the Large
Hadron Collider (LHC) and elsewhere, and therefore may result in immediate improvements in
sensitivity. In addition, this prescription allows for easy post-hoc histogram-based diagnostics. These
may include quantification of the impact of additional sources of systematic uncertainties that are not
used for training, and checks for whether the measurement over-constrains the nuisance parameter.

While we focus on the profiling aspect of uncertainty awareness, there is a complementary line of
research on the use of inference-aware loss functions [24–30] and Bayesian neural networks for
estimating uncertainties [31–34]. We leave the combination of these methods with our uncertainty-
aware approach to future work. Additional information about the interplay between uncertainties and
machine learning can be found in recent reviews [22, 35].

All the neural networks discussed in this paper were trained using KERAS [36] with a TENSOR-
FLOW [37] backend on a single NVIDIA GEFORCE GTX GPU. Further implementational details are
available with the code at https://github.com/hep-lbdl/systaware.

2 Uncertainty-Aware Classifier

The uncertainty-aware network is trained with the true value of the nuisance parameter z as an input
to the network in additional to the observables x, see Fig. 1. Trained with a Binary Cross-Entropy
loss, the network approximates the score,

s(x, z) =
p(x|Z = z, S)

p(x|Z = z, S) + p(x|Z = z,B)
. (1)

where p(·) denotes a probability density, S represents the signal class andB represents the background
class. Note that Eq. 1 depends on z, in contrast to the standard search paradigm in which the analysis
observables are fixed and the sensitivity to z is evaluated post-hoc.

3 Evaluation Methodology

To evaluate the power of various approaches, we apply them to a common use case, fitting a signal
hypothesis in the presence of background, where both signal and background depend on nuisance
parameters. For ease of calculations we perform a binned likelihood fit.

For each strategy, template histograms of the classifier score are constructed from simulated signal
and background events for several values of the nuisance parameter z. These templates are the basis
of the binned likelihood calculation L(µ, z|{xi}) over the parameters µ, z, where {xi} is the full
observed dataset. The likelihood is a product of a Poisson term for each histogram bin and a Gaussian
constraint on the nuisance parameter. The Gaussian constraint can readily be replaced with any other
prior or a Poisson term from an auxiliary measurement if z is directly constrained with control region
data. The Negative Log-Likelihood (NLL) is (up to an irrelevant constant),

− logL(µ, z|{xi})

= −
nbins∑
j=1

[
Nj · log (µsj + bj)− µsj − bj − log(Γ(Ni))

]

+

(
z − z0√

2σz

)2

, (2)
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Figure 2: Example NLL as a function of
µ and z for baseline classifier.

where sj , bj are the expected number of signal and back-
ground events in bin j, respectively, and Nj is the number
of events observed in data for that bin. The Γ function is
the generalized factorial function which can handle dec-
imal values in the simulated test dataset. Although the
log(Γ(Ni)) term is usually irrelevant, it not a constant
while using an uncertainty-aware network and cannot be
ignored.

The fitted value of µ is obtained by minimizing Eq. 2.
Since the measurement of the nuisance parameter is not
the final objective, it is in fact the profile likelihood,
Lp(µ) = maxz L(µ, z), that is the most relevant met-
ric for determining the relative power of the various ap-
proaches. As a diagnostic, the parameter of interest may
be profiled over instead to check if the measurement over-constrains the nuisance parameter.

4 Gaussian Example
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Figure 3: The profile likelihood
maxz L(µ, z) as a function of the param-
eter of interest, µ for various classifiers.
Narrower curves indicate more precise
measurements having accounted for sys-
tematic and statistical uncertainties.

We begin with a Gaussian example with a two-dimensional
feature space and a single nuisance parameter. Signal
events are drawn from Gaussian distributions in the two
features, with means at cos (z) and sin (z), respectively;
the width of each is set to 0.7. Background events are
generated in same fashion, but with means for the two
features at − cos (z) and − sin (z) respectively.

A set of 4.2 × 107 events are generated at 21 values of
z equally spaced between 0 and π/2 for the signal and
background. z = π

2 is treated as the nominal value. Ten
bins are used to construct the template and observed his-
tograms. The parameter of interest is the signal strength
µ with a true value of 1.

Results: For some observed data, the NLL (Eq. 2) is
calculated as a function of the parameter of interest µ and
the nuisance parameter z for each approach. An exam-
ple of this two dimensional NLL distribution is shown in
Fig. 2, which was computed by comparing templates from
the baseline classifier to the “observed data” generated at
z = π

4 .

The profile likelihood for each method is shown in Fig. 3 for data generated with z = π
2 .We see that

the uncertainty-aware classifier provides the best performance.

5 Realistic Example

The study is also performed on datasets [38] produced [39] for the HiggsML Kaggle challenge [40]
and later enhanced [41] as benchmark datasets for uncertainty quantification [42, 43]. The nuisance
parameter is related to the uncertainty of the measured τ lepton transverse energy.

Results: The performance of the four approaches are compared on data generated at the nominal
value of z = 1 as well as shifted values of z = 0.8 and z = 1.1. In addition to these approaches,
classifiers trained on data from the shifted values of z are added to the comparisons. The true value
of µ was set to 1 throughout. Thirty bins are used to construct the template and observed histograms.

Figure. 4 shows that the uncertainty-aware classifier maintains ideal performance for all values of z
while all other approaches are at best able to match the performance only for a single value of z.
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6 Theory Uncertainties
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Figure 5: Performance of classifiers on data gener-
ated from PYTHIA, HERWIG, and SHERPA. Solid
lines correspond to the nominal classifier trained
with PYTHIA while dotted lines correspond to the
adversarial setup using PYTHIA and HERWIG. The
bottom panel shows the relative absolute difference
with respect to PYTHIA (nominal or adversarial,
as appropriate). Note that the lower panel has a
logarithmic vertical axis.

While incorporating uncertainties in the training
is desirable, caution must be taken to include
only nuisance parameters with a statistical ori-
gin. For example, uncertainties due to fragmen-
tation modelling are often estimated using the
difference of two models (PYTHIA and HER-
WIG), and a full theoretical uncertainty decom-
position is unknown. An example [44] of two
classifiers trained to identify W boson jets (sig-
nal) from quark and gluon jets (background) is
shown in Fig. 5, where adversarial training is
used to reduce the difference in performance
between PYTHIA and HERWIG. By sacrificing
separation power, this difference is successfully
reduced when compared to the large gap in per-
formances for the nominal classifier. However,
the difference in performance to data generated
with a third model (SHERPA) remains large in
both classifiers, indicating that the the true un-
certainty will be underestimated in the case of
the adversarial classifier if a third independent
sample is unavailable.

7 Conclusions

In this paper, we have advocated for uncertainty-
aware classifiers where the dependence on nui-
sance parameter is maximized during training by exploiting parameterized classifiers [16, 17]. Using
a Gaussian example and a realistic H → ττ example, we have shown that the uncertainty-aware
approach outperforms alternative methods that either are unaware of uncertainties or try to reduce the
dependence on them during training1. Our approach is successful because it provides the most effec-
tive classifier for all values of the nuisance parameter. This is useful when uncertainties are evaluated
and when the nuisance parameter is profiled. It should be straightforward to apply this approach to
multiple nuisance parameters although it was demonstrated on a single nuisance parameter in this
paper.

1Further details can be found in Ref. [23]
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Figure 4: Physics Dataset: Profiled NLL curves for all four classifiers evaluated three values of z
where the true value of µ is 1. Narrower curves indicate more precise measurements having accounted
for systematic and statistical uncertainties.
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We also recommend that caution must be taken in applying uncertainty mitigating solutions along
with an explicit example of the possible danger. We show a case where decorrelating the dependence
of a classifier to a theoretical uncertainty only serves to hide the size of the true uncertainty2. While
demonstrated for decorrelation, this cautionary tale remains relevant for other uncertainty or inference
aware machine learning approaches [18–22, 24–30]. Ultimately, the decision to use the additional
feature or not depends on how the test statistic will be used in the analysis.

The uncertainty-aware technique proposed here is a straightforward extension of existing LHC
analyses and will require minimal changes or computational overhead. The biggest improvements
are expected in analyses limited by experimental systematics. A large number of analyses will fall
into this category at the High-Luminosity LHC and beyond.
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