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Abstract

Physically-inspired latent force models offer an interpretable alternative to purely
data driven tools for inference in dynamical systems. They carry the structure
of differential equations and the flexibility of Gaussian processes, yielding inter-
pretable parameters and dynamics-imposed latent functions. However, the existing
inference techniques rely on the exact computation of posterior kernels which are
seldom available in analytical form. Applications relevant to practitioners, such
as diffusion equations, are hence intractable. We overcome these computational
problems by proposing a variational solution to a general class of non-linear and
parabolic partial latent force models. We demonstrate the efficacy and flexibility of
our framework by achieving competitive performance on several tasks.

1 Introduction & Background

A vast variety of phenomena in the sciences, from systems of interacting particles to the aerodynamics
of aircraft, are represented by differential equations. Machine learning approaches such as neural
ordinary differential equations (ODEs) [Chen et al., 2018] and non-parametric ODEs [Heinonen et al.,
2018] have become popular black-box models. However, the lack of an explicit equation means that
these methods lose intepretability and the ability to infer latent terms. On the other hand, Latent Force
Models (LFMs) [Lawrence et al., 2007, Alvarez et al., 2009] are a hybrid paradigm combining the
structure and extrapolation of explicit models with the flexibility of Gaussian processes (GPs). This
fusion is a powerful approach to problems in biophysics [López-Lopera et al., 2019, Moss and Lió,
2020] and stochastic control [Särkkä et al., 2018, Cheng et al., 2020]. However, they often require a
intractable integration of the kernel function, severely limiting their usefulness.

Addressing these drawbacks, we introduce Alfi, a flexible variational framework for parameter
estimation in ordinary and partial differential equation (PDE)-based LFMs. The main contributions
are: (i) a gradient-matching step followed by fine-tuning with the full solution, enabling quadratic-
time inference in LFMs; and (ii) inference of latent forces from partially known dynamics in temporal
and spatio-temporal settings without onerous kernel derivations.

Latent Force Models (LFMs) are differential equation models which leverage explicit dynamics to
infer latent forcing terms [Lawrence et al., 2007, Alvarez et al., 2009]. The differential equation, h,
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Figure 1: Computational graphical model for Alfi. Step (1) involves pre-estimating the parameters and
latent forces of the differential equation in Eq. 1 by gradient-matching with the spline-interpolated
derivative. Step (2) involves the more expensive forward solution of the differential equation and
backpropagation through the ODE or PDE solver for fine-tuning the parameters.

parameterised by Θ, enforces a structural relationship between P outputs, y(x) ∈ RP , N inputs,
x ∈ RN , and L unobserved latent forces, f(x) ∈ RL. GP priors are assigned to the latent forces, fi:
fi ∼ GP(0, κi(x, x′)), and these forces can be mixed by some response function G(f).

differential︷ ︸︸ ︷
D y(x) =

differential equation︷ ︸︸ ︷
h
(
y,x; Θ, G(f1(x), ..., fL(x))

)
, (1)

where D is a differential operator, for example an nth order (partial) derivative. The covariance
between outputs, κy,y′(t, t′), is analytically tractable if G is a linear operator. In these cases,
maximum marginal likelihood yields the differential equation parameters and inference can be carried
out with standard posterior GP identities (see Rasmussen and Williams [2005]).

2 Approximate Latent Force Models

We propose Alfi, an approximate latent force inference framework significantly expanding the class
of latent force models. It supports any differentiable kernel, and is agnostic to the functional form
of the response to latent forces, G. An example of a non-linear intractable response is a saturating
function such as the Hill equation for modelling reaction kinetics in biophysical problems:

G(f(t); wj) =

∏
i fi(t)

wji∏
i fi(t)

wji + e−wj0
(2)

where wji are interaction weights, incorporating cooperation/competition between the forces fi.

2.1 Variational Objective

Let Ŷ ∈ RN×P represent the forward solution of a differential equation at N points given parameters
Φ, a differentiable transformation (G) of latent forces, and input X ∈ RN×D. The input dimensions
are D = 1 (e.g. time) for ODEs, or D > 1 (e.g. time and space) for PDEs. Our formulation
extends to arbitrary output dimensions, P . Let F =

[
f>i
]L
i

be our set of independent latent forces
where fi ∼ GP(0, κΘ(x,x′)) with kernel hyperparameters Θ. We assume a Gaussian likelihood,
p(Y|F,Φ) = N (Y|Ŷ, σ2), and seek to optimise parameters by marginalising over the latent forces:

p(Y|Φ,Θ) =

∫ likelihood︷ ︸︸ ︷
p(Y|F,Φ)

L∏
i

GP︷ ︸︸ ︷
p(fi|X,Θ) df . (3)

This marginal is intractable when G is non-linear, so we derive an expectation lower-bound (ELBO)
for the marginal likelihood using a variational approximation. We add M inducing points, ui ∈
RM×D, for each latent force: U =

[
u>i
]L
i

. Due to the conditional independence across the latent
forces given any mixing parameters (e.g. Eq. 2), a factorised variational distribution is used:
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q(u) =
∏L
i N (mi,Ci) with variational parameters mi ∈ RM and Ci ∈ RM×M . This yields the

ELBO we seek to to optimise (the full derivation is in Appendix C):

log p(Y|Φ,Θ) = Eq(F) [log p(y|F,Φ)]−
L∑
i=1

KL(q(ui)||p(ui)), (4)

where q(F) =
∫
p(F|U)q(U)dU and we approximate the expected log-likelihood with Monte Carlo

sampling. The variational posterior is p(f∗i |ui) = N (f∗i |m∗i ,S∗i ) where m∗i = K∗MK−1
MMmi and

S∗i = K∗∗ + K∗MK−1
MM (Si −KMM )K−1

MMKM∗ [Hensman et al., 2015].

2.2 Optimisation of Variational Objective

At each epoch, a batch of the latent forces is sampled from the variational posterior using the
reparameterisation trick, enabling pathwise gradient estimation. Parameters are pre-estimated in the
first few epochs, followed by fine-tuning with the forward solution. With e differential equation
evaluations, the computational complexity is O(NM2 + e). Pseudocode along with sample code
snippets are in Appendix B and E. We now detail these steps.

Step (1): Parameter pre-estimation by gradient matching. The forward solution of an ODE or
PDE is the most computationally expensive component of our algorithm. As such, we develop a
pre-estimation step to initialise the variational and differential equation parameters. We implement
a gradient-matching algorithm whereby the differential equation is evaluated, with no calls to the
solver, at all training points and compared with the interpolated gradient of the data at those points.
We chose natural cubic splines for this purpose since they are linear in the number of points; more
expensive alternative interpolations are discussed in Appendix B.

Step (2): Forward solution fine-tuning. This step involves executing an appropriate differential
equation solver to generate samples from the LFM. For ODEs, we employ an ODE solver, through
which the gradients are backpropagated. PDE-based LFMs are more involved since they are much
harder to solve than in the ODE case. The GP component uses an anisotropic kernel where each
dimension gets a separate lengthscale, since the latent force is likely to vary across time and space
at different scales. We solve the PDE using the finite element method (FEM), which first requires
converting it into its weak form, which is then solved on a discretised spatial mesh. The weak form
is written in the domain-specific Unified Form Language (UFL) [Alnæs et al., 2014]. Alfi uses the
FEniCS package [Logg et al., 2012, Alnæs et al., 2015] for solving the variational problems. The
gradients can be determined with reverse-mode algorithmic differentiation using the adjoint equations,
computed using the dolfin-adjoint package [Mitusch et al., 2019].

3 Experiments

Starting with a simulation of predator-prey dynamics, we demonstrate the ability to infer the prey
dynamics without knowledge of prey abundance. We also investigate PDE-based LFMs with the
spatio-temporal production of protein in fruit fly embryos with a reaction-diffusion equation.

ODE System: The Lotka-Volterra equations are a system of non-linear first-order differential
equations used to model predator-prey dynamics. The population of predators, v, is related to the
population of prey, u, with the following pair of equations:

du

dt
= αu− βuv, dv

dt
= δuv − γv, (5)

where α, δ are growth rates; β, γ are decay rates; and for clarity u = u(t) and v = v(t).

Assuming the population of prey is unknown and positive, we assign a Gaussian process prior to the
function u(t) ∼ GP(0, κ(t, t′)) and a softplus response, G(•) = log (1 + e•), meaning the solution
is intractable. While the the ubiquitous radial basis function (RBF), a universal smooth function
approximator, would provide a good interpolation, a more sensible kernel would be periodic:

κp(t, t′) = exp

(
2 sin2(π|t− t′|)/p

`2

)
, (6)
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where p is the period parameter, determining the interval of time after which the function repeats. As
seen in Figure 2, the periodic kernel enables realistic extrapolation beyond the training time range.
As shown in Appendix G.2, an RBF kernel yields inferior results.

PDE System: Reaction-diffusion equations are second-order parabolic PDEs ubiquitous in the natural
sciences. We take a model of gap gene protein production in Drosophila [López-Lopera et al., 2019]:

∂u(x, t)

∂t
=

reaction︷ ︸︸ ︷
Su(x, t)− λy(x, t) +

diffusion︷ ︸︸ ︷
D
∂2u(x, t)

∂x2
, (7)

where D is the diffusion constant(s), S is the production rate of the driving mRNA (the latent force)
and λ is the decay rate. The output, y, is the protein concentration. We assign an anisotropic
RBF kernel prior over the latent force u. Dirichlet boundary conditions are assigned such that
y(x = 0, t) = 0 and y(x = l, t) = 0 where 0 and l are the spatial boundaries.

We start with the weak form for this PDE by multiplying by a test function v ∈ V and integrating the
second derivatives by parts over the spatial domain, Ω.∫

Ω

yv + ∆tD∇xy · ∇xv d~x =

∫
Ω

(yn + ∆tSu−∆tλy)v d~x, (8)

a(y, v) = Ln+1(v) (9)
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Figure 3: Pre-estimation:
gradient-matching improves
convergence.

where a(y, v) is a bilinear form, v is known as a test function belong-
ing to some Banach space V , and function parameters have been
omitted (i.e. u = u(x, t)). For completeness, the full derivation and
transcription into UFL can be found in Appendix D and E.2.

The results are shown in Table 1, and the full qualitative outputs
are in Appendix G.3. We note that when using the parameter pre-
estimation procedure, the convergence is significantly sped up and
the ELBO starts at a lower initial value, as shown in Figure 3.

4 Discussion

Alfi enables approximate inference in linear, non-linear, ordinary, and partial latent force models. The
output of Alfi is a conditional Gaussian process, meaning the resolution, uniformity, and range of
evaluation points is arbitrary. In addition, the error of the result is tunable using the tolerances in the
solver. When compared with analytical LFMs, our method overcomes the complex derivations of
integrated kernels, which are either intractable or involve complicated convolutions [Lawrence et al.,
2007]. Since FEM is limited by the curse of dimensionality, so will Alfi’s performance on PDEs.
Regardless, the severity is minimal since many physical problems are in 3D or 4D.

Ethical considerations: There could be sensitive applications (e.g. medical time-series) where blind
faith in inferred forces can lead to detrimental effects on the patient. This is a consideration inherent
in all models, however in this case the latent nature could be more pernicious.
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Figure 2: Alfi with a periodic kernel on the Lotka-Volterra task. Orange crosses indicate the training
datapoints. Blue and green lines are used for predator and prey respectively, orange line for unseen
prey ground truth. Left: the output dynamics with the training data as crosses along with the latent
dynamics. Right: the phase space (u, v) alongside the unseen ground truth.
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Table 1: Results of Alfi versus the closest model in the literature, GP-mRNA [López-Lopera et al.,
2019]. Alfi obtains a comparable performance in most cases, although the higher latent force inference
error is an avenue for further research. For metrics explanation see Appendix G.1.

Trunk Q2[%] ↑ 68− CA±σ[%]
Model Gap mRNA Gap Protein mRNA Gap Protein

Gene µ± σ µ± σ µ± σ µ± σ
kr 90.5 ± 2.0 90.8± 0.6 −3.7± 6.7 21.8± 4.0

GP-mRNA kni 81.1± 2.5 88.7± 0.8 18.3± 6.3 35.3± 5.3
gt 91.2± 1.9 92.3± 0.6 −0.7± 3.3 25.8± 1.8

kr 82.4± 1.2 95.7± 0.2 3.3± 3.5 19.4± 2.0
Alfi* kni 77.2± 2.6 86.9± 2.9 −1.5± 1.6 12.4± 9.1

gt 72.4± 3.3 86.5± 1.2 −3.9± 4.4 5.8± 14.3
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A Comparison

Machine learning methods for differential equations typically assume the equation is unknown, and
follow either a GP or neural network approach. For example, differential GPs [Hegde et al., 2018],
generalise the discrete layers of a deep GP to a sequence of infinitesimal steps in which the input is
warped through a vector field defined by an stochastic differential equation (SDE). However, the SDE
acts only as a mechanism for constructing a model rather than as an actual physical model. A similar
approach also treats the ODE as unknown using a Gaussian process and uses the full solution along
with sensitivity equations to extract gradients [Heinonen et al., 2018]. This model, however, only uses
the conditional mean of the Gaussian process, whereas Alfi also captures the covariance. The neural
network methods, popularised by Chen et al. [2018], represent the ODE function as a neural network,
where the weights are optimised by backpropagation through an ODE solver or via adjoint equations.
Some recent extensions add stochasticity in the form of initial condition distributions [Norcliffe et al.,
2021]. Unknown dynamics models lack the ability to infer latent forces, and therefore cannot be
compared directly with LFMs.

Latent force models (LFMs) are between the explicit and unknown differential equation paradigms;
the equation depends on a set of latent forces which are inferred using the explicit dynamics. There
are several other approaches for overcoming the intractable posterior in non-linear LFMs, namely the
Laplace approximation [Lawrence et al., 2007] and MCMC [Titsias et al., 2008]. Hartikainen et al.
[2012] show the connection between non-linear latent force models and non-linear SDEs, thereby
enabling an approximation using Gaussian filtering and smoothing. Neural network approximations
have also been attempted, where an inverse autoregressive flow [Kingma et al., 2016] is used to model
the variational posterior [Ward et al., 2020].

B Training Scheme

Natural cubic splines: Our pre-estimation procedure is similar to neural controlled differential
equations Kidger et al. [2020] only in the choice of spline. Our interpolant is not fed through a
solver–it is used only for gradient estimation. There are many possible interpolation approaches to
use instead of cubic splines. One popular method is using a Gaussian process [Calderhead et al.,
2009, Dondelinger et al., 2013, Wenk et al., 2019] with a differentiable kernel (and mean) function.
Gaussian processes with such kernels are closed under differentiation, and the covariance terms
can be found as cov(ẏj(t), ẏj(t

′)) = ∂2K(t,t′)
∂t∂t′ . Cubic splines are linear in the number of points, in

contrast to GPs which are cubic (or quadratic for non-naive implementation [Gardner et al., 2018]).
Since cubic splines are used in pre-estimation, only the 1st and 2nd derivatives are continuous. If the
model has higher order derivatives, a higher order spline can be used or the higher-order derivatives
ignored—only an approximation is desired in this step.

Natural gradient optimisation: optimising the variational parameters using gradient descent in
parameter space assumes Euclidean geometry. Variational parameters exist in distribution space, so we
should use a more appropriate geometry within which we calculate distance, such as KL-divergence.
Natural gradient optimisation takes steps in this space.

Algorithm 1: Alfi Scheme: Steps (1) and (2)
Input: x,y
initialization;
for i← 1 to T do

latent_forces = variational_posterior(x);
if preestimation then

target← spline_interpolate_gradient(x,y) ; // target is gradient
pred← de_func(initial_conditions, latent_forces);

else
target← y ; // target is solutions
pred← solve(de_func, initial_conditions, latent_forces);

end
loss← elbo(pred, target)

end

8



C ELBO Derivation

For completeness, we include here the derivation of the ELBO in Equation 4.

log p(Y|Θ,Φ) = log

∫∫
p(Y|F)p(F|U)p(U)dUdF, (10)

= log

∫∫
p(Y|F)p(F|U)p(U)p(F|U)q(U)

p(F|U)q(U)
dUdF (11)

We now apply Jensen’s inequality:

≥
∫∫

p(F|U)q(U) log
p(Y|F)p(U)

q(U)
dUdF, (12)

=

∫
q(U)

[∫
p(F|U) log p(Y|F)dF + log

p(U)

q(U)

]
dU, (13)

= Eq(U)

[
Ep(F|U) [log p(Y|F)]

]
−KL(q(U)||p(U)), (14)

= Eq(F) [log p(Y|F)]−
L∑
i

KL(q(ui)||p(ui)), (15)

D Heat Equation Weak Form Derivation

We go through the complete instructive derivation for the heat equation’s variational form below.

∂ty(x, t) = Su(x, t)− λy(x, t) +D∇2
xy(x, t) (16)

The first step in FEM is to find the variational form. We henceforth omit function parameters (e.g.
u = u(x, t)). First, we take the finite backwards difference as follows ∀n = 0, 1, 2, ...:

∂ty
n+1 ≈ yn+1 − yn

∆t
= Su− λy +D∇2

xy (17)

We rearrange to find a bilinear form on the left-hand-side and a linear form on the right:

yn+1 + ∆tλyn+1 −∆tD∇2yn+1 = yn + ∆tSu (18)

For brevity we now drop the n+1 indices (y = yn+1). The next step in FEM is to multiply both sides
by a test function v ∈ V and integrate over the spatial domain Ω. The Dirichlet boundary conditions
are defined such that y(x = 0, t) = 0 and y(x = l, t) = 0 where 0 and l are the spatial boundaries.∫

Ω

(yv + ∆tλyv −∆tD∇2
xyv)d~x =

∫
Ω

(yn + ∆tSu) v d~x (19)

We can integrate the second derivatives by parts:∫
Ω

∆tD∇2
xyv d~x = D [∇xy · v]l0︸ ︷︷ ︸

0

−
∫

Ω

∆tD∇xy · ∇xv d~x (20)

where [∇xy · v]l0 vanished due to boundary conditions. This yields the variational (weak) form:∫
Ω

yv + ∆tλyv + ∆tD∇xy · ∇xv dx =

∫
Ω

(yn + ∆tSu)v d~x (21)

a(y, v) = Ln+1(v) (22)

This weak form can then be written in UFL almost verbatim.

E Code

E.1 Differences between an ODE- or PDE-based LFM

Both OrdinaryLFM() (for ODE-based LFMs) and PartialLFM() (for PDE-based LFMs) inherit
from the VariationalLFM() class which provides methods for sampling from the variational GP.
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Depending on which class is used, the practitioner must implement the ode_func or pde_func
function, which are used by the solvers to calculate the forward solution, and the pre-estimator
(PreEstimator) to calculate data gradients.

An example LFM for a transcriptional regulation model from is written below, demonstrating how
simple Alfi makes constructing LFMs:

class TranscriptionLFM(OrdinaryLFM):
def __init__(self, num_outputs, gp_model, config: VariationalConfiguration, **kwargs):

super().__init__(num_outputs, gp_model, config, **kwargs)
self.decay_rate = Parameter(torch.rand((self.num_outputs, 1)))
self.basal_rate = Parameter(torch.rand((self.num_outputs, 1)))
self.sensitivity = Parameter(torch.rand((self.num_outputs, 1)))
# optionally add any constraints...

def odefunc(self, t, h):
f_latents = self.f
f_latents = self.G(f_latents) # optionally add non-linearity
dh = self.basal_rate + self.sensitivity * f_latents - self.decay_rate * h
return dh

E.2 Unified Form Language for PDEs

The PartialLFM requires an additional module called fenics_module. This is defined in Unified
Form Language (UFL) [Alnæs et al., 2014]. An example UFL snippet for the reaction-diffusion
equation from Section 3 is shown below:

mesh = UnitIntervalMesh(20)
V = FunctionSpace(mesh, 'P', 1)

u = TrialFunction(V)
v = TestFunction(V)

a = (1 + dt * decay) * u * v * dx
a = a + dt * diffusion * inner(grad(u), grad(v)) * dx
L = (u_prev + dt * sensitivity * latent_force) * v * dx

bc = DirichletBC(V, 0, 'on_boundary')

y = Function(V)
solve(a == L, y, bc)

F Time profiling

As shown in Figure 4, the convergence of the variational LFM has a faster or comparable training
time to the analytical solution, as shown in Figure 4b for the 1D case.

G Additional Results

G.1 Metrics

We use the Q2 = 1− SMSE criterion, where SMSE is the mean-squared-error (MSE) normalised by
the target variance, overcoming the sensitivity of MSE to the scale of the target values [Rasmussen
and Williams, 2005]. In addition, to give more insights into the more challenging spatio-temporal
experiments, we also quote coverage interval accuracy deviation (68%− CA±σ), which measures
the proportion of targets within 1 standard deviation of the predictive distribution.
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Figure 4: Time profiling.

G.2 Lotka-Volterra

In Figure 5, the results for the Lotka-Volterra task are shown when using an RBF kernel instead of
the periodic kernel.
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Figure 5: Alfi with an RBF kernel on the Lotka-Volterra task. This demonstrates inferior extrapolation
performance compared with a periodic kernel, since a periodic kernel has additional inductive biases.

G.3 Drosophila

In Figure 6, the results for the reaction-diffusion experiment with the Drosophila embryogenisis
dataset are shown.

H Hyperparameters

Hyperparameter optimisation is typically carried out with maximum marginal likelihood, or a lower-
bound thereof. The hyperparameters were initial set to reasonable values: lengthscales of kernels
were set to the smallest distance between datapoints, and rates to a uniform random number between
0 and 1. For the comparison with GP-mRNA [López-Lopera et al., 2019], we kept the experimental
conditions the same: the rates were fixed to the values reported by Becker et al. [2013], and the
lengthscales were learnt by maximising the ELBO.
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Figure 6: Alfi on the Drosophila reaction-diffusion task. First and second columns: the latent mRNA
concentration alongside ground truth. Third and fourth columns: protein concentration alongside
ground truth.
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