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Abstract

We propose a paradigm shift in the data-driven modeling of the instrumental
response field of telescopes. By adding a differentiable optical forward model
into the modeling framework, we change the data-driven modeling space from the
pixels to the wavefront. This allows to transfer a great deal of complexity from
the instrumental response into the forward model while being able to adapt to
the observations, remaining data-driven. Our framework allows a way forward to
building powerful models that are physically motivated, interpretable, and that do
not require special calibration data. We show that for a simplified setting of a space
telescope, this framework represents a real performance breakthrough compared
to existing data-driven approaches with reconstruction errors decreasing 5 fold
at observation resolution and more than 10 fold for a 3x super-resolution. We
successfully model chromatic variations of the instrument’s response only using
noisy broad-band in-focus observations.

1 Introduction

In astrophysics and cosmology, as in many other fields of physics, the next decade will bring about a
new generation of extremely powerful instruments, such as Euclid [1] or the Nancy Grace Roman
Space Telescope [2]. A proper modeling of the instrumental response is an absolute prerequisite to
the ambitious science goals of these missions. Current data-driven modeling approaches are not able
to cope with the stringent error requirements imposed by the new generation of instruments. They
can even be orders of magnitude away from the prescribed error budget [3], and they are not able to
model chromatic variations (i.e. with wavelength).

In this paper we illustrate how some new technologies brought about by the Deep Learning (DL)
revolution can be leveraged to rethink the way we model the instrument response or point spread
function (PSF). To this end, we follow the approach in [4], and propose a paradigm shift in the form
of a novel framework that includes a differentiable optical forward model. This allows to shift the
usual data-driven modeling space from the pixels to the wavefront and translate much of the modeling
complexity into the forward model. The use of DL methods for the modeling of instrumental response
fields is limited due to the complexity of the modeling problem and the fact that current efforts are
blind to the physics of the problem [5]. The present work lays the groundwork for the introduction of
physically-motivated and interpretable DL methods into the modeling of instrumental response fields.
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2 Point spread function modeling for space mission telescopes

The modeling of the PSF in the field of view (FOV) can be seen as an inverse problem. Telescope
observations include point-like stars and extended objects of interest at different positions in the FOV.
We consider stars as samples of the PSF field in the FOV and use them to constrain our model, which
we then use to infer the PSF at target positions. PSF field modeling encompasses several challenges:

1. The PSF varies spatially in the FOV. The model needs to capture the spatial variations of
the PSF shape from the stars in order to infer the PSF at target positions.

2. The observations are in general under-sampled. The model needs to super-resolve the
output PSFs. This differs from the usual super-resolution (SR) task, as we do not have
several observations of the same object we need to super-resolve. In this case, we have
several samples of the under-sampled PSF field at different positions in the FOV.

3. The PSF varies as a function of wavelength. Also known as chromatic variations, they need
to be included in the PSF model for most science goals. When the instrument has a broad
passband, each star observation is integrated with respect to its wavelength throughout the
passband.

2.1 Related work

Data-driven PSF models Classical data-driven PSF models only rely on the stars to build the
model in pixel space and are blind to the physics of the inverse problem. They mostly differ in the
way they handle the spatial variations and the super-resolution [3, 6–9]. They have difficulties in
modeling complex PSF shapes such as those from space missions which are close to the diffraction
limit. There is no published method capable of successfully modeling the chromatic variations.

Parametric PSF models This class of models, on the contrary, builds a parametric model of the
entire optical system that should be as close as possible to the actual telescope. Then, a few number
of model parameters are fit to the observations, in some cases wavefronts. Errors will arise when
there is a mismatch between the parametric model and the ground truth. Furthermore, even if,
ideally, there were no mismatch, the optimization of these models in wavefront space is a degenerate
problem. It requires potentially expensive calibration information, usually in the form of out-of-focus
observations, in order to break degeneracies. Nevertheless, a model of this type has been used for the
Hubble Space Telescope (HST) [10, 11].

Phase retrieval with automatic differentiation Estimating the wavefront of an in-focus observa-
tion falls in the category of phase retrieval problems. Recent works [12, 13], based on a framework
established by [14], are tackling this problem [15] using automatic differentiation. Their objective
is solely to estimate the wavefront of a single in-focus image. Such methods are unusable for the
current PSF modeling problem as we are interested in the pixel representation at positions where we
do not have observations of the PSF. In the proposed model, the wavefront is an intermediate product
for our goal rather than as an objective in itself.

3 Data-driven wavefront PSF model

The stars observed in our FOV are samples of the PSF field. The following observational model,

Ī(xi, yi) = F
{∫

passband
SED(xi, yi;λ) I(xi, yi;λ) dλ

}
+ ni , (1)

relates the star observation Ī(xi, yi) ∈ RN×N in the FOV position (xi, yi) ∈ R2 with the objective
modeling quantity I(xi, yi;λ) ∈ RM×M , which is at a higher resolution with respect to the obser-
vations (M > N ). The desired instrumental response I is integrated in the instrument’s passband
weighted by the star’s normalized spectral energy distribution SED(xi, yi;λ) ∈ R+, which we con-
sider to be known. Then, it is degraded with the operator F : RM×M → RN×N , which accounts for
down-sampling and could include other types of pixel-level degradation (e.g. sub-pixel shifts, pixel
response). The observational noise is modeled by ni, which we assume to be Gaussian for simplicity,
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Figure 1: A schematic of the proposed framework for data-driven wavefront PSF modeling.

i.e. ni ∼ N (0, σ2
i IN ). The PSF modeling problem consists in estimating {I(xj , yj ;λ)}j=1,...,ntarget

for all the target positions and wavelengths having as input a set of observations {Ī(xi, yi)}i=1,...,nobs .

Up to now, data-driven models were built using some type of dimensionality reduction method applied
in pixel space, where our observations belong, being blind to the optical system. The modeling
problem in pixel space is too complex for the quality and amount of observed data, and they cannot
cope with the new challenges of upcoming instruments. We propose a complete paradigm shift with
respect to the way data-driven PSF models have been constructed so far. We, instead, model the PSF
field in the wavefront space without any special calibration information. More specifically, we model
the optical system’s aberrations as the difference in phase with respect to a wavefront from a flawless
optical system. This crucial change is allowed by the inclusion of a physics-based forward model that
can go from the wavefront to the pixel representation. The forward model is end-to-end differentiable
thanks to modern automatic differentiation frameworks [16]. It allows propagating gradients from
the reconstruction error to the wavefront parameters of our PSF model through the optical system
and the degradations. An illustration of the proposed framework can be seen in Figure 1.

The forward model is built under Fraunhofer’s diffraction, which is valid for these astronomical
telescopes. This allows to relate the wavefront aberrations to the pixel PSF by means of the squared
absolute value of the fast Fourier transform (FFT) of the complex pupil function [17, 18]. The
sampling can be controlled by a variable zero-padding of the pupil function. The reconstructed PSF
at any specific wavelength and FOV position can be written as

Ĥ(xi, yi;λ) ∝ crop
p×p→M×M

∣∣∣∣∣FFT
{ Pupil function︷ ︸︸ ︷
P � exp

[2πi
λ

Φ(xi, yi)︸ ︷︷ ︸
Wavefront PSF model

]}∣∣∣∣∣
2

︸ ︷︷ ︸
Pixel representation

, (2)

where P ∈ Rp×p represents the telescope’s obscurations, and Φ : R2 → Rp×p is the wavefront PSF
model that maps a position in the FOV with its corresponding wavefront. Once the reconstructed PSF
Ĥ from Equation 2 goes through Equation 1, it can be matched with the observations (see Figure 1).

With the proposed framework, a big part of the problem’s complexity is shifted from the PSF model
into the forward model that is now encoding all the diffraction phenomena. The chromatic variation
due to diffraction are described by the λ dependence in Equation 2. This allows to simplify the
building of the PSF model block seen in Figure 1. We now need to focus on a good generalization
capability of the PSF to target positions, and the model adaptation to the observed data. We propose to
build the wavefront PSF model, Φ, using a weighted sum of wavefront features. The weights will vary
as a function of the FOV position (x, y), which writes Φ(x, y) =

∑
l f

Z
l (x, y)SZ

l +
∑

k f
DD
k (x, y)SDD

k

with fZ
l , f

DD
k : R2 → R and SZ

l , S
DD
k ∈ Rp×p. The features SZ are not learned, but based on Zernike

polynomials [19]. These provide a good basis for modeling circular apertures as they are orthogonal
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on the unit disk. The data-driven (DD) features SDD are non-parametric and entirely learned from the
data. These DD features adapt to capture variations that are not well modeled by the Zernike features
(or modes) and also account for mismatches between our forward model and the ground truth. For
fZ
l , f

DD
k we emphasize on the generalization, and we use for each FOV position polynomials up to

orders dZ and dDD, respectively. For example, if dZ = 1 we have fZ
1 (x, y) = a1 + b1x+ c1y.

In a nutshell, we optimize over the polynomial coefficients of fZ
l , f

DD
k , and the DD features SDD. The

loss function used is the mean squared error weighted by the inverse of the estimated noise level,
e.g. L ∝

∑
i(1/σ̂i)‖Īi − H̄i‖2F . The optimizer used is the Rectified ADAM [20] algorithm. If prior

information is available, it can be added as regularizations at the wavefront level or the pixel level.

4 Experiment

To demonstrate our novel framework, we simulate a simplified FOV with 2000 star observations for
training and 400 noiseless target stars for testing. All the positions are randomly distributed in the
FOV, and the observations have a variable signal-to-noise-ratio (SNR) uniformly distributed in the
range [10, 110]. We use parameters for an optical model close to the Euclid’s VIS instrument model
[1, 21], but do not consider further detector effect. For the SEDs, we randomly choose for each star
one of the 13 templates from [22] as done in [23, §5.3]. For the ground truth (GT) model we use
45 Zernike modes with a dZ of 2 for each mode. The polynomial coefficients are randomly chosen
taking care that the total aberration at any position is within certain limits. The dimensions used are,
p = 256, M = 64 and N = 32.

We compare: i) a wavefront PSF model with 15 Zernike modes and without DD part using dZ = 2,
ii) a model equivalent to i) but increasing the Zernike modes to 40, iii) a wavefront PSF model with
15 Zernike modes, dZ = 2, and 21 DD features (dDD = 5), iv) a widely-used model PSFEx [7], and
v) the current state-of-the-art data-driven model RCA [3] which has been specially designed for the
Euclid mission. All the models are compared in the reconstruction of the target stars to evaluate their
generalization power in addition to their modeling capabilities. The metrics analyzed are the root
mean squared error (RMSE) of the reconstruction of target stars, at 1 and 3 times the observation
resolution.

Table 1: Target star reconstruction RMSE at the observa-
tion resolution and at SR.

RMSE [×10−5] (relative)

PSF model Resolution x1 Resolution x3

i) Zernike 15 72.3 (10.0%) 18.3 (12.4%)
ii) Zernike 40 22.2 (3.0%) 5.75 (3.9%)
iii) Zernike 15 + DD 8.34 (1.1%) 4.47 (3.0%)
iv) PSFEx 69.2 (9.5%) 66.3 (43.0%)
v) RCA 39.6 (5.4%) 85.3 (55.5%)

Results Table 1 summarizes the main
results. First, one can notice the break-
through in performance by observing
the gap between model (iii) and the two
models without the forward model (RCA,
PSFEx), almost 5 times and more than
10 times lower RMSE for resolutions x1
and x3, respectively. One can see that
models (i) and (iii) use a reduced num-
ber of Zernike modes with respect to the
GT model that uses 45, three times more.
The model (i) is under-performing con-
siderably, showing the lack of representation of the reduced number of modes. However, even if
we keep a reduced number of Zernike modes we see the effectiveness of the data-driven features in
model (iii) and how they can adapt to the observations and still generalize to target positions. Despite
the increase in the number of Zernike modes in model (ii), being close to the GT, the wavefront DD
(iii) model still outperforms considerably. A remarkable fact is the performance gap in the super
resolution task between the first three models that use the forward model and the others. It underlines
the importance of adding prior physical information into the inverse problem to solve a hard task as
SR. We include the RMSE error as a function of wavelength for model (iii) in Figure 4, achieving an
impressive mean relative RMSE of 3% showing that the model is capturing the chromatic variations
of the PSF. We stress that the other data-driven models, (iv) and (v), are not capable of modeling the
PSF as a function of wavelength. Appendix A provides additional figures of this experiment.
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5 Conclusion

We have presented a novel framework for the data-driven modeling of an instrumental response field
which represents a paradigm shift with respect to current state-of-the-art data-driven methods. We
propose to include a differentiable physics-based forward model that allows to change the modeling
space from pixels to the wavefront. Thus, transferring most of the modeling complexity into the
forward model and simplifying the building of the instrumental response model. We have shown the
importance of a data-driven term in the model. This term can be successfully learned from noisy
under-sampled observations using the differentiable optical model. When applied to simplified space
telescope simulations, the proposed approach has proven to be a breakthrough in terms of performance
compared to current state-of-the-art data-driven models. Furthermore, it is now possible to effectively
model the wavelength dependence of the instrumental response from broad-band observations.

6 Broader impact

The proposed framework can change the way data-driven instrumental response fields are currently
being modeled. This approach can be of particular interest for the Euclid space telescope [1], the
Vera C. Rubin Observatory [24] or the Nancy Grace Roman space telescope [2]. Weak gravitational
lensing[25] plays a fundamental role in their science goals, which places stringent requirements on
the point spread function model. Nevertheless, the framework is sufficiently adaptable for other
purposes where a good characterization of an instrument response is needed. If the Fraunhofer
approximation is not valid anymore, the optical forward model should be refactored. We believe this
work does not entail any negative consequences or ethical issues. A journal paper based on this work
is in preparation. Code to reproduce the experiences will be released soon.
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A Additional figures

In this appendix, we provide additional figures from the numerical experience of section 4. Fig-
ure 2 illustrates examples of the observed stars used as training and their corresponding wavefront
information.

Figure 4 presents the target star reconstruction RMSE as a function of wavelength at three times
the Euclid resolution. We remark that PSF reconstruction at specific wavelengths is not possible for
current data-driven PSF models. One can notice that the reconstruction error is kept low inside all
of Euclid’s broad passband (i.e. 550nm to 900nm). This indicates that model (iii), in the proposed
framework, is not degenerating with respect to the different wavelengths. This could have been
the case as the optimization is done only using broad-band observations, as seen in Equation 1 and
Figure 1, without having access to observations at specific wavelengths.

Figure 3 shows examples of learned data-driven features from model (iii). It is interesting to see that
the learned features are not completely degenerate and some structure has been learned from the
stars with the help of the automatic differentiation. Figure 5 presents PSF reconstructions at a target
position, the corresponding ground truth PSF, and its residuals. We remark the very low residuals
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obtained by model (iii) from the proposed framework. The model is capturing a good super-resolved
representation of the PSFs as well as a reliable monochromatic, or single wavelength, representation.
It is also proving to generalize well to target positions that have not been used during the training of
the model. One can see the increase of PSF shape complexity when we super-resolve the images as
well as when we reconstruct the PSF at specific wavelengths. These images represent some of the
burden in the PSF modeling task and the difficulties we face when trying to estimate the PSF of the
third row of Figure 5 from observations like the ones from Figure 2. It is crucial to change the space
of representation of the PSF model from the pixel to the wavefront in order to include the physics of
the problem, as for example, the diffraction phenomena.
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Figure 2: The top row presents examples of star observations at Euclid resolution from the training dataset.
These are examples from different positions in the FOV and have different signal-to-noise ratios. The bottom
row shows the corresponding ground truth wavefront maps of each observed star.
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Figure 3: Examples of learned data-driven features SDD .
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Figure 4: Target star reconstruction RMSE as a function of wavelength at three times the Euclid resolution. The
model (iii) uses the proposed wavefront framework with 15 Zernike modes and a data-driven component. The
solid line (circular markers) corresponds to the RMSE on the left axis, and the dashed line (triangular markers)
corresponds to the relative RMSE on the right axis. The error bars represent the standard deviation of the RMSE
over the star reconstructions at the different target positions.
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Figure 5: Different type of reconstructions for a single target position. The first column represents the ground
truth PSF, the second column, the reconstructions from the proposed PSF model using a data-driven component,
and, the third column, the absolute value of the residuals between the ground truth and our model. Top:
Reconstruction at the Euclid resolution for a broad-band, or polychromatic, observation. Middle: Reconstruction
at three times the Euclid resolution (SR task) for a polychromatic observation. Bottom: Reconstruction at three
times the Euclid resolution for specific wavelength of 750nm.
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