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Abstract

Bayesian techniques have been shown to be extremely efficient in optimizing
expensive to evaluate black box functions, in both computational (offline design)
and physical (online experimental control) contexts. Optimizing physical systems
often comes with extra challenges due to costs associated with changing parameters
in real life experimentation, such as measurement location in physical space or
mechanical/electrical actuation in scientific equipment. In these cases, the cost
of changing a given input parameter is often proportional to the magnitude of
the change. To minimize these costs, optimization algorithms can simply limit
the maximum distance travelled in input space during each step. However, hard
restrictions on travel distances inhibits global exploration advantages normally
afforded by Bayesian optimization algorithms. In this work, we describe a proximal
weighting term that can bias acquisition functions towards localized exploration,
while still allowing for large travel distances, if far away points are predicted to
be valuable for observation. We describe a use case where this weighting is used
to minimize the uncertainty of a particle accelerator Bayesian model in a smooth
manner, which in turn, minimizes temporal costs associated with changing input
parameters.

1 Introduction

The efficient global optimization of black box problems is a challenge faced by many who work in the
physical sciences [1H3]. Bayesian optimization (BO) [4} 5] has been shown to perform well in solving
physical [6-H9] optimization problems for which gradient information is unavailable, while naturally
treating statistical noise inherent in most physical scenarios. In these cases, a statistical model,
normally a Gaussian process (GP) [10], is combined with an acquisition function that determines
the best set of input parameters to observe next. There are a wide variety of acquisition functions
which can serve several purposes, including global optimization [11}[12]] and characterization through
uncertainty quantification [[13].

However, most if not all acquisition functions ignore costs associated with varying input parameters
in physical systems. For example, if we want to determine the location of maximum concentration
of chemical contaminants in a wide area [14], we must expend resources in terms of time or effort
to sample separate locations in input space. Widely used acquisition functions such as Expected
Improvement (EI) [[15] or Upper Confidence Bound (UCB) [[16] do not take these costs into account,
resulting in large parameter changes during each optimization step to maximize expected value from
future observations of the target function. This degrades performance when the cost of traversing
input space is significant, relative to the cost of making observations.

Furthermore, rapid changes in input parameters are unacceptable when operating complex exper-
imental equipment during experiments. For example, particle accelerators that are used to study

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).



chemical [17]], physical [18]], or biological [[19] systems are extremely complex machines that rely
on the interconnection between many subsystems. Individual accelerator subsystems are often au-
tonomously controlled by internal feedback loops that maintain performance or prevent damage to
components in response to external changes. If external changes swing widely from one extreme to
another, these internal feedback loops can take a long time to regain stability or in the worst case, can
fail completely. As a result, it is critical that controlled parameters are varied in a adiabatic manner.

Naive methods for encouraging this behavior in Bayesian optimization removes the exploration aspect
of BO necessary for global optimization. For example, we could choose the exploration-exploitation
trade-off parameter of EI or UCB [20] such that it heavily weights exploitation. Alternatively, we
could simply restrict the maximum travel distance that the optimizer can travel in each step by zeroing
the acquisition function outside a given radius from the current location. These methods are not ideal,
as they remove the exploration aspect of BO, potentially causing the algorithm to get stuck in local
extrema.

To solve this problem, we propose including a squared exponential biasing factor in acquisition
functions used for Bayesian optimization, which minimizes the costs of traversing input space
while still allowing for exploration. We provide a description of our biasing function along with
an instructive synthetic example. Then we describe how we used this modification to efficiently
characterize a physical accelerator during online operations where changing parameters incurs a
temporal cost similar in magnitude to the measurement cost.

2 Proximal Biasing

We bias the acquisition function of a Bayesian optimization loop by simply multiplying the original
acquisition function a(x) by a biasing term W(x,Xq; X). We choose the biasing term to be a squared
exponential function giving the biased acquisition function

a(x) = a(x)¥(x,%x0; %) (D
U(x,X0; ) :exp(— %(X—XO)TE_l(X—XO)> 2)

where xg is the most recently observed point and ¥ = diag()) is a diagonal covariance matrix
chosen prior to optimization. Each element of the covariance matrix describes how strongly biased
the algorithm is towards nearby points. In the general framework of cost-aware Bayesian optimization
[21] this term can be interpreted as an inverse cost function ¢(x,x’) = 1/¥(x,x¢; X). Through this
framework we can apply this cost function to any previously defined acquisition function used in
serialized optimization, including those expressed analytically or calculated numerically using Monte
Carlo estimation.

A demonstration of the biasing term’s effect on optimization is shown in Figure 1. Our goal is to
characterize the first objective function used in the constrained TNK multi-objective optimization test
problem [22]. To achieve this, we use the following active learning-based acquisition function

N
a(x) = o(x) H Pi[gi(x) > hi 3)

where P;[g;(x) > h;] represents the probability of satisfying the i’th problem constraint given by
gi(x) > h;. We run optimization trials with and without proximal biasing, starting with a single
initialized point and iterating for 25 steps, retraining the GP model hyperparameters at each step
using marginal log likelihood maximization.

Figure [T[(a) shows the path taken by the optimizer without proximal biasing in input space during
optimization. The optimizer chooses points that aggressively reduce the uncertainty in the GP model
while attempting to remain in the valid region (red shading), resulting in a chaotic sampling pattern.
We also observe that the optimizer makes several large excursions outside of the valid region to
explore limits of the input domain.

Figure [T[b) shows optimization of the same problem with the addition of an isotropic proximal
biasing term with A = 0.01. In this case we clearly see a smoothing of the path through input space
and a reduction of total travel length over the optimization path. We repeated each optimization trial
in Figure |1| with the same initial point 25 times and calculated the average total distance traveled
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Figure 1: Plots showing Bayesian optimization sampling patterns with and without proximal biasing
for the TNK test problem. Optimization begins with a single sample (red) and travels through 2D
input space. Points that satisfy the TNK problem constraints (red shading) are labeled valid (orange).
(a) Optimization path without proximal biasing. (b) Optimization path with proximal biasing where
> = 0.011. The green arrow denotes an optimization step where the optimizer “jumps" over previous
measurements.

by the optimizer for each. The unbiased optimizer travelled a distance of 20.1 &+ 1.3 and the biased
optimizer travelled a distance of 5.9 £ 0.5. Of particular interest is the optimization step denoted by
the green line segment in Figure[T(b), where the optimizer “jumps” over previously observed points
where the uncertainty is expected to be low. By biasing the acquisition function using a function that
is non-zero everywhere, we enable the optimizer to make large jumps in input space when necessary,
while reducing the travel distance during optimization.

3 Application to Characterizing Particle Accelerators

We used this technique to characterize the quality of beams produced by the Argonne Wakefield
Accelerator facility at Argonne National Laboratory [23]]. The figure of merit we use to describe
beam quality is the beam’s “emittance” [24]]. Our goal is to measure the beam emittance as a function

of four tunable parameters in the accelerator using the acquisition function defined in Eq. [3|

When conducting experiments at a real accelerator, it is important to reduce the amplitude of
adjustments to accelerator parameters. Many electrical and mechanical subsystems in the accelerator
are controlled by elements which trade adjustment speed for precision. As aresult, in these subsystems
the temporal cost of making substantial changes in control parameters is significant. Furthermore,
since most subsystems in the accelerator are interconnected and rely on internal feedback algorithms
to maintain performance, rapid changes in accelerator parameters can introduce instability issues into
these systems [25]], which can result in long periods of time to reach stability.

We explored the beam response with respect to four accelerator parameters. Two parameters were the
currents applied to two solenoid magnets (referred to here as “focusing” and “matching”) near the
electron source. The other two parameters are the currents applied to two focusing magnets further
down the beamline (referred to here as “DQ4” and “DQS5”). The measurement of beam emittance was
done using a specialized diagnostic that has a small dynamic range [26]. As a result some regions of
input space did not produce valid measurements. The validity of each measurement was used as a
constraint function during characterization.

Figure[2(a) shows results from an characterization run with no proximal biasing. Each input parameter
varies widely from step to step, accumulating cost associated with changing each parameter. We
also observe that the fraction of valid measurements converges to approximately 0.55. Figure 2(b)
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Figure 2: Experimental characterization progress as a function of sample index with and without
proximal biasing. Top four rows trace normalized free parameter values. Fifth row plots the fractional
mean uncertainty of the GP model relative to the initial uncertainty. Last row plots the fraction of
valid measurements.

on the other hand shows that the proximal term (2 = 0.01I) significantly reduces the magnitude of
adjustments to each input parameter. The travel distance in normalized parameter space with biasing
(16.8 u) was significantly less than the travel distance without biasing (59.6 u), representing a 3.5
fold reduction.

We saw similar performance in minimizing our objective function for each trial, ie. the total model
uncertainty, despite the smaller steps in parameter space when biasing is included. It is certainly
possible that performance can be negatively impacted in other situations [9] so balancing the potential
impacts of decreased convergence speed with reductions in observation costs is a requirement for
ideal optimization.

Finally, we also observe that biasing increases the number of valid measurements during optimization,
where the fraction of valid measurements converges to 0.77. We believe that this is due to the
improved model confidence regarding constraints in a local region around previous measurements
where the proximal biasing term is largest.

4 Conclusion

Here we have introduced and demonstrated a modification to classical Bayesian optimization that
biases optimizers towards making small steps in input space, while preserving exploration advantages
afforded by Bayesian optimization. By choosing a biasing function that never reaches zero, we allow
the optimizer to choose large travel distances if the measurement value is large. Our modification
to standard acquisition functions is especially important for optimization of physical systems like
particle accelerators, since minimizing the costs of changing parameters is critical towards minimizing
the overall cost of optimization. Code and data for this work can be found in the public repository
https://github.com/roussel-ryan/neurips_proximal.
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