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Abstract

Developing fast and accurate surrogates for physics-based coastal and ocean mod-
els is an urgent need due to the coastal flood risk under accelerating sea level rise,
and the computational expense of deterministic numerical models. For this purpose,
we develop the first digital twin of Earth coastlines with new physics-informed
machine learning techniques extending the state-of-art Neural Operator. As a
proof-of-concept study, we built Fourier Neural Operator (FNO) surrogates on the
simulations of an industry-standard coastal and ocean model – Nucleus for Euro-
pean Modelling of the Ocean (NEMO). The resulting FNO surrogate accurately
predicts the sea surface height in most regions while achieving upwards of 45x
acceleration of NEMO. We delivered an open-source CoastalTwin platform in an
end-to-end and modular way, to enable easy extensions to other simulations and
ML-based surrogate methods. Our results and deliverable provide a promising
approach to massively accelerate coastal dynamics simulators, which can enable
scientists to efficiently execute many simulations for decision-making, uncertainty
quantification, and other research activities.

1 Introduction
Rising sea levels are one of the most significant results of climate change, potentially threatening
lives and damaging infrastructure in the coastal regions [1]. The accelerating rate of sea level rise
will exacerbate coastal flooding, particularly under the increasing coastal populations and in some
regions an increase in the severity of extreme storms [2, 3]. Physics-based numerical models, such
as Nucleus for European Modelling of the Ocean (NEMO) [4], have been developed to simulate
and predict dynamics of sea surface height. These physical models – driven by wind speed and
mean sea level atmospheric pressure – simulate the dynamics of water velocity and sea surface
height by solving the mass and momentum conservation equations. Yet running these physics-based
models can be extremely computationally expensive depending on the simulation time, the domain
size and resolution, due to the need to numerically resolve multi-physics and multi-scale dynamics
represented through coupled nonlinear equations in large spatial domains [5]. In particular, these
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Figure 1: Snapshots of the simulation of Nucleus for European Modelling of the Ocean model (NEMO) and
emulation of Fourier Neural Operator (FNO) for present time estimation using present atmospheric forcings (i.e.,
case C1 in Table 1).

complex simulators are not fast enough for reliable risk estimation, uncertainty quantification, or
real-time predictions [5], and are replaced by models with physical approximations that sacrifice
accuracy for computational efficiency [6].

Machine learning (ML) methods have received much attention in the Earth science community
due to their success at providing fast data-driven models with high accuracy [7, 8]. In particular,
surrogate modeling approaches replace expensive forward simulations by statistical representations
through regression [9]. A recent focus has been on coupling ML and physical models (such as
partial differential equations (PDEs)), such that the solutions not only faithfully reproduce the
simulation but also physical constraints [10, 11]. However, training classical physics-informed neural
networks is difficult due to the need to resolve the discretized PDE in the loss function [12]. Indeed,
researchers found that these approaches are unable to represent dynamics of simple cases such as
a one-dimensional two-phase flow model [13]. On the other hand, the recently proposed Fourier
Neural Operator (FNO) [14] shows a promising alternative by learning the dynamics in the frequency
domain. In doing so, FNO is not limited to one specific instance of a PDE but directly learns the
solution operator of the PDE, which makes it mesh-independent [14].

Here, we propose the first “coastal digital twin,” an emulator built on state-of-art physics-informed ML
techniques to produce computationally lightweight surrogate models that provide fast and accurate
predictions of sea surface heights in coastal regions. As a proof-of-concept experiment, we developed
a digital twin for the NEMO simulations in northwestern Europe using an improved version of FNO.

Our results show: (1) the extension of FNO to learn multivariate dynamics (note that FNO was used
for univariate cases in its original development [14]); (2) the overall superior performance of FNO
over the baseline model UNet [15] in emulating sea surface height; (3) the adverse impact of masked
land boundaries in training FNO; and (4) a 45x acceleration achieved by FNO compared with NEMO
simulation. We deliver the code and data to reproduce these results with our open-source platform
CoastalTwin, including tools to extend our initial experiments.1

2 Method

Our work is the first to use FNO to represent the complexity of real-world dynamics, including
multivariate, multi-scale, and coupled phenomena. We simulate a coupled system of nonlinear
equations including two-dimensional (2D) momentum balance for water velocity, mass balance, and
boundary conditions between ocean/sea floor/sea surface [4]. In this section, we summarize the
NEMO simulations and environment for this coastal climate setting, the FNO surrogate methods, and
the specifications of our open-source platform CoastalTwin.

1Repository is open-sourced at the following address: gitlab.com/frontierdevelopmentlab/fdl-2021-digital-
twin-coasts/coastaltwin
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Figure 2: Pipeline for emulating Sea Surface Height (SSH) based on NEMO atmospheric forcings, including
both the bathymetry profile and the dynamics of mean sea level pressure (MSLP), U-direction wind speed (U10),
and V-direction wind speed (V10), using CoastalTwin of the four cases in Table 1.

2.1 NEMO simulation

NEMO was set up at a resolution of approximately 7 km over a domain covering northwestern
Europe using the tri-polar ORCA grid system. The overall domain size was 520x292 cells. The
atmospheric forcings of NEMO include mean sea level pressure (MSLP), U-direction wind speed
(U10), and V-direction wind speed (V10) calculated at a height of 10 m above the surface from
the downscaled product of ECMWF Reanalysis 5th Generation [16]. The bathymetry profile was
from the General Bathymetric Chart of the Oceans product [17]. The simulation of two-dimensional
(2D) sea surface height (SSH) was performed for all of 2020 with a timestep of 360 seconds and
output every 5 minutes. In this experiment, we normalized the dynamic forcings and simulations
(i.e., U10/V10/MSLP/SSH) to mean zero and unit variance, and implemented a special scaling for
bathymetry such that B′ = ln(B+50)−ln(50)

ln(100) , where B is the ocean depth. This special scaling results
in the local topological features that are sensitive to small bathymetry changes around zero but
insensitive to moderate changes at large bathymetry. We then split the normalized dataset into test
(April 2020) and training (the remaining 11 months) sets. More information on NEMO can be found
at [4].

2.2 Fourier Neural Operator
Physics-informed ML methods integrate mathematical physics models with data-driven learning,
namely with neural networks (NNs) [10]. A promising direction in spatiotemporal use-cases is neural
operator learning: using NNs to learn resolution-invariant solution operators for PDEs [18, 19]. To
achieve this, Li et al. [14] use a Fourier layer that implements a Fourier transform, then a linear
transform, followed by an inverse Fourier transform for a convolution-like operation in a NN.

2.3 CoastalTwin
For implementing FNO and other ML-based surrogates, we developed CoastalTwin, a modular and
extensible platform to integrate simulations from physical models, such as NEMO, with ML models,
to produce reliable, accelerated emulation of coastal and ocean dynamics.

Using CoastalTwin, we developed the surrogate models of NEMO to predict SSH at time tM based
on both atmospheric forcings (i.e., U10, V10, and MSLP) at preceding times tN , ..., t0 and the
bathymetry, where t0 is the present time, N ∈ I the history and M ∈ I the lookahead, and ∆t = 5
min the FNO time step. FNO is compared to a baseline UNet-based model [15]. The model was
trained on various timescales constituting cases Ci = {N=0,M=0}1, {N=− 3,M=0}2, {N=−
3,M=6}3, {N=− 3,M=12}4 (Fig. 2). While case C1 predicts the present SSH using the present
forcings, the other three cases use forcings at both present and historical time steps, tN :0, to estimate
SSH at a single present or future time, {t0, t6, t12} = 0, 15, 30 min.

Modeling and experiment specs Each FNO was developed by sequentially stacking a linear layer
outputting 20 channels, 5 Fourier layers, and a final linear layer outputting 1 channel. Each Fourier
layer contains 20 channels and a maximum of 40 frequency modes in both spatial dimensions, fol-
lowed by a batch normalization and ReLU activation. Each UNet adopted three blocks of convolution
in both contracting and expansive paths with the remaining architecture equivalent to [15]. We used
the Adam optimization and a step-wise decreased learning scheduler with an initial rate 0.01, step
size 20 epochs, and decay rate 0.1. We trained each model using Mean Squared Error (MSE) as
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the loss function over 50 epochs and batch size 32, on one Tesla A100 Graphics Processing Unit
(GPU). We masked the land simulation in the loss to alleviate the adverse impact of land, where SSH
is undefined. In addition to MSE as a performance metric, we computed the Structural Similarity
Index (SSIM) [20] and the correlation coefficient (CORR) between times series of prediction and
true at each grid point.

3 Results

MSE/1-SSIM
C1: N=0,M=0 C2: N=-3,M=0 C3: N=-3,M=6 C4: N=-3,M=12

FNO 0.0011/0.2283 0.0018/0.2549 0.0011/0.2369 0.0011/0.2323
UNet 0.0025/0.4178 0.0033/0.4180 0.0025/0.4232 0.0025/0.4263

Table 1: Performances of the trained FNO and UNet of the four cases on the test dataset with regards to: Mean
Squared Error (MSE) and one minus Structural Similarity Index (1-SSIM).

Table 1 summarizes the experiment results. Our FNO approach outperforms UNet for all the four
cases with respect to MSE and 1-SSIM. This illustrates that FNO can better capture the PDE-based
simulations than the baseline model, particularly in this multivariate scenario. Snapshots of FNO
emulation of case C1 on the test dataset shows its good agreement with the NEMO simulation (Fig.
1). In general a significant speed-up is achieved by using the FNO surrogate, which took ∼2 min to
emulate the 1-month test dataset while the NEMO simulation took ∼1.5 hr on a single core of a 2.6
GHz CPU – we can expect GPU-parallelization and other optimizations to improve this speed-up
another magnitude or more. Therefore, the FNO is well posed to be used as a fast and accurate
surrogate for PDE-based simulation of NEMO.

For all the cases using FNO, the two metrics are similar to each other, with values of 0.001∼0.002
and 0.228∼0.255 for MSE and 1-SSIM, respectively. The close performances of cases C1 and C2

indicate that including historical dynamics does not strictly improve the modeling performance.
Meanwhile, when involving historical inputs (i.e., cases C2, C3, and C4), the results show that longer
time prediction (1 hr for Case C4) can be as reliable as the present prediction (Case C2). This is
likely because the prediction at limited future time steps (up to 1 hr) are well constrained by the PDE
surrogates.

To explore the detailed estimation behavior of FNO and UNet, we computed the spatially- distributed
correlation as well as the 2D frequency differences between the two surrogates, based on Fast
Fourier Transform (FFT). Results of case C1 is shown in Fig. 3, where we observe higher spatially
averaged correlation with FNO than with UNet. In fact, FNO predictions correlate with the NEMO
simulation better in most regions than UNet except the east coast of France and Spain, where the SSH
dynamics are severely constrained by the land surface surroundings. The poor performance of FNO
in land-surrounded areas reveals its potential inability to resolve local dynamics that are strongly
affected by masked boundaries. Indeed, the impact of the masked boundaries is evidenced by the
reduced correlations of FNO around the UK coastal region, although FNO still outperforms UNet.
The 2D frequency plot in the bottom panel of Fig. 3 shows the temporally- averaged 2D spectra of
NEMO simulation and its difference with FNO and UNet in the frequency domain. Compared with
UNet, FNO does a better job in resolving the dynamics to a great extent in the red center box where
the maximum frequency cutoff of the Fourier layer is defined. Nevertheless, both models show a
significant difference with the NEMO spectra in the other cross sign frequency, which likely signifies
the inability to represent coastal dynamics around the masked region.

4 Conclusion and Outlook

For the first time, a digital twin was developed for physics-based multivariate coastal and ocean
modeling by leveraging the state-of-the-art neural operator, and demonstrated on complex real-world
Earth systems data. Through experiments with NEMO simulations, we demonstrated the efficiency
and accuracy of FNO on the sea surface height predictions, given that the training was performed
with a limited dataset (i.e., single run of one-year simulation). FNO proves to be superior to the
baseline UNet for all the four cases in capturing the overall predictions as well as the predictions in
each spatial grid.
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Figure 3: (top) Spatial correlation between NEMO simulation and FNO/UNet emulations for Case C1 on the
test dataset; (bottom) the corresponding frequency analysis using Fast Fourier Transform (FFT).

Future work will focus on the following two pathways. First, the FNO model requires a thorough
hyperparameter tuning as well as a modification to address the adverse impact of masked land
boundaries, which is a common issue in coastal modeling. Despite these limitations, it is important
to note that emulation of digital twin is upwards of 45x faster than the NEMO simulation. This
unparalleled success, therefore, underscores the other future pathway – developing a composite
digital twin to emulate coastal inundation height. By leveraging neural operators, surrogates will be
developed to reproduce coastal flooding in meter resolution generated by physics-based model such
as Coastal Storm Modeling System (CoSMoS) [21]. Together, the two surrogates compose the coastal
digital twin by serving complementary roles to simulate coastal dynamics in both local (meters) and
regional (kilo-meters) scales. In either surrogate development effort, it is nonetheless important to
continue validation experiments in various settings prior to use for real-world decision making, and
further investigation is suggested into downstream effects and ethical implications of such decisions.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] The main limitation of FNO lies

in the adverse impact of masked inland boundary in this experiment.
(c) Did you discuss any potential negative societal impacts of your work? [No] We

respectfully suggest that the developed model along with the open-source CoastalTwin
platform would be beneficial to surrogate modeling development in Earth science. We
further state the need for investigations into potential societal impacts of downstream
use, along with additional model validations.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
The source codes of this platform and training UNet and FNO are available at:
gitlab.com/frontierdevelopmentlab/fdl-2021-digital-twin-coasts/coastaltwin and will be
open-sourced upon publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 2.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] A thorough hyperparameter tuning is the next step.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 2.2.
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