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Abstract

Discrete Fracture Network (DFN) flow simulations are commonly used to deter-
mine the outflow in fractured media for critical applications. Here, we extend the
formulation of spatial graph neural networks with a new architecture, called Graph
Informed Neural Network (GINN), to speed up the Uncertainty Quantification
analyses for DFNs. We show that the GINN model allows better Monte Carlo
estimates of the mean and standard deviation of the outflow of a test case DFN.

1 Introduction: Uncertainty Quantification for Discrete Fracture Networks

The determination of flow and transport in underground fractured media is a problem of interest for
several critical modern applications concerning civil, environmental and industrial engineering. A
convenient model to represent flow in fractured media is represented by Discrete Fracture Networks
(DFNs) [1, 2, 3]. In these models each fracture of the network is represented by a planar polygon
into a 3-dimensional domain and it is characterized by its own hydro-geological and geometrical
features (namely: position, size, orientation, fracture transmissivity, etc.). The flux exchanges between
fractures occur along the segments of fractures intersections, denoted as traces. The assumptions about
the used DFN model are: (i) the rock matrix surrounding the polygonal assembly is impenetrable; (ii)
the flux propagation on each fracture is ruled by the Darcy law; (iii) finally, at all fracture intersections
head continuity and flux balance are assumed. The present assumptions are correct for fractures that
are porous media with a permeability much larger than the permeability of the surrounding rock
matrix.

For DFN, fractures are commonly described by sampling their hydrogeological and geometrical
features from given distributions, because the knowledge of hydrogeological and geometrical fractures
parameters is usually not available. Due to the amount of uncertainty in the representation of DFNs,
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flow and transport in a real fractured medium are studied from a statistical point of view, resorting
to Uncertainty Quantification (UQ) analyses. These UQ analyses are likely to involve thousands
of DFN simulations; in order to speed up these analyses, it is worth considering some sort of
complexity reduction techniques. Indeed, flow simulations in DFNs are likely to be quite challenging
problems, due to several issues as the size of realistic networks or the geometrical complexity of
the computational domain. These properties make the meshing process an hard task whenever
conforming meshes are needed. In recent literature several new methods have been proposed which
use different strategies for circumventing meshing problems, either partially or totally. For the DFN
simulations of this work, we follow the approach described in [4, 5, 6], consisting in a reformulation
of the problem as a PDE-constrained optimization problem, in which the need for conforming mesh is
completely overcome. However, the computational burden of simulations on a realistic DFNs is still
expensive, and it may be prohibitive for the large number of simulations required for UQ analyses.

The cost of these analyses necessarily put the focus on model reduction methods to speed up the
simulations. Machine Learning (ML) has recently attracted plenty of attention in several frameworks
related to the aformentioned problems. In recent contributions [7], ML techniques have been applied
to DFN flow simulations in conjunction with graph-based methods. Morover, Neural Networks (NNs)
have been applied in a UQ framework by [8]: given a stochastic elliptic PDE with uncertain diffusion
coefficient, the authors construct a NN as surrogate model to replace the forward model solver, while
performing Monte Carlo (MC) simulations for UQ.

An interesting approach for DFNs is the one used in [9, 10]. Similarly to [8], the approach consists
of the usage of a NN-based model for the UQ analyses, instead of DFN simulations. In particular,
the DFN simulations are used to build an accurate training dataset; then, a NN model is trained
on the dataset to provide a surrogate model; finally, the NN model is used to build a larger set of
approximated DFN simulation results useful for the UQ analyses in a negligible amount of time.

In this paper, we describe a new graph neural network model, which is based on the mathematical
formulation of a so-called Graph Informed (GI) layer. For DFNs, the idea is to take advantage of their
graph representation, i.e., of the relationships between the fractures (nodes) through the traces (edges).
The layer formulation extends the previous formulations of spatial graph layers, as classified by the
survey paper [11]. The GI layers are inspired by convolutional layers and they prove to be useful
for regression tasks with respect to graph-structured features and targets, such as the flux regression
problem in DFNs. We name the new neural networks characterized by GI layers as Graph Informed
Neural Networks (GINNs), because they incorporate the knowledge about the graph adjacency matrix
in the neuronal links. Finally, we show that the MC estimates for UQ obtained using the enlarged
dataset provided by the GINN predictions returns better MC moment estimates of the DFN fluxes
than the ones obtained using the simulations of the training dataset.

2 Graph Informed Layer for neural networks

The main idea of spatial graph neural networks [11] is to generalize the properties of “sparse
interaction” and “parameter sharing” of convolutional layers to graph-structured features. Let
us consider a directed graph G = (V,E) of n nodes without self-loops, with adjacency matrix
A ∈ Rn×n. Given a filter w ∈ Rn such that wj is the weight associated to node vj ∈ V , the output
feature of node vi ∈ V with respect to a GI layer of weights w is

x′i = f
( ∑

j∈Nin(i)∪{i}
xj wj + bi

)
, (1)

where xj is the feature associated to node vj , Nin(i) = {j ∈ V | (j, i) ∈ E} is the index-
neighbourhood of node vi, bi is the bias associated to vi, and f the activation function. Equation
(1) holds also for undirected graphs: any undirected edge {vj , vi} is equivalent to two directed
edges (vj , vi) and (vi, vj). A GI layer characterized by (1) can also be interpreted as a “constrained”
fully-connected layer with weights wji = wj if (vj , vi) ∈ E; wji = wi if j = i; null otherwise.

The above formulation can be stated in matrix form for all the node features. Let Â be Â := A+ In,
with In ∈ Rn×n identity matrix. Then, a GI layer LGI is described by a function LGI : Rn → Rn
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Figure 1: Archetipe of the GINN architectures. Red for weight tensors of the hidden GI layers, orange
for layers output tensors, and purple for the output layer weights with max-pooling and masking.

defined as

LGI(x) = f
(
Ŵ> x+ b

)
, such that Ŵ := Â�

[
w , · · · ,w

]
︸ ︷︷ ︸

n times

, (2)

where x ∈ Rn is the vector of input features, w ∈ Rn is the weight vector, � is the Hadamard
product, f is the element-wise application of the activation function, and b ∈ Rn is the bias vector.

A careful reader can observe that equation (2) partially resemble the NN4G layer (see [11, sec. V.B.]
and [12]), without residual nor skip connections. Nonetheless, our formulation of equation (2) can be
generalized in tensor form to multiple input features K ∈ N per node and multiple filters F ∈ N (i.e.,
output features per node). Let x̂ ∈ RnK be the vectorization of the input X ∈ Rn×K , let B ∈ Rn×F

be the bias matrix, and let us denote by Ŵ ∈ RnK×F×n the tensor (generalization of the weight
matrix Ŵ ). Then, the generalized formulation of the GI layers is the function LGI : Rn×K → Rn×F

such that
LGI(X) = f

(
Ŵ
> · x̂+B

)
. (3)

Similarly to convolutional layers, we define also a pooling operation for the GI layers, to gather the
information of the F filters of the output matrix through arbitrary “reducing operations” (e.g., the
mean, the max, the sum). Moreover, since the regression targets could be associated only to a subset
of the graph node, we add a masking option for the GI layers. For DFNs the mask is applied only to
the output layer.

We observe that the LGI general formulation belongs to the framework of Message Passing NN
(MPNN) [13], although the different formulations of MPNN discussed in [13] do not provide a
tensorization similar to equation (3). To the best of the authors’ knowledge, other formulations of
spatial graph neural networks did not propose either a tensor formulation like equation (3) (cfr. [11]).
Other similarities to GINNs can be observed in the works [14, 15], which exploits the adjacency matrix
to characterize the information flow. However, in [14] the NN is composed of many interconnected
simple NNs according to the adjacency matrix, and in [15] the same NN architecture is used following
the principle of the physics informed NNs (see [16, 17]).

3 Graph Informed Neural Networks for Discrete Fracture Networks

We consider the flux regression problem over a DFN. We name the test case DFN158, which consists
of a fixed geometry with n = 158 fractures, immersed in a cubic domain D with a 1000 meters long
edge. Fractures have been randomly generated using geological distributions of the geometrical
features [18, 19]. The flow problem for DFN158 is defined by fixed boundary Dirichlet conditions
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Figure 2: 3D view of the DFN158 used in the experiments

Table 1: Monte Carlo estimates of mean and standard deviation of total outflow fluxes. In brackets
the relative error w.r.t. MCP . The flux unit measure is mm2s−1.

MCP MCGI MCP|ϑ

mean 141.54 141.07 (0.3%) 143.93 (1.7%)

std 27.84 27.31 (1.9%) 30.10 (8.1%)

on the fracture edges of the DFN intersecting the leftmost and rightmost faces of the domain (w.r.t.
x axis, see Figure 2). Dirichlet conditions impose a fixed pressure difference of 10 meters between
the same two faces of D, characterizing the flux directionality; therefore, the resulting m = 7
outflow fractures are fixed independently of the fracture transmissivities. The fracture transmissivities
κi for each fracture Fi are modelled as random variables with log-normal distribution [20, 21] :
log10 κi ∼ N (−5, 1/3).

We use GINN models to approximate by regression the m fluxes exiting from DFN158, for any
vector of fracture transmissivities κ = [κ1, . . . , κn]

>. We sample randomly 3000 transmissivities
κ and we compute the corresponding fluxes ϕ through DFN simulations, obtaining a test set of P
of 3000 pairs. (see appendix A for details about the dataset) (κ,ϕ) ∈ Rn × Rm. Equivalently, we
build a dataset D of ϑ = 500 pairs (κ,ϕ) to train the GINNs; in particular, D is randomly split into
a training set (80%) and a validation set for early stopping (20%). We conduct a grid search study
of 360 GINN models over D and we select the best GINN model according to the best total outflux
relative error over P (see appendix A for details about the grid search).

In Table 1 and Figure 3 we report the results of a numerical experiment to show the GINN potentials
for the outflow moment estimates of DFN158 in a UQ scenario, varying the transmissivities κ. We
establish as “best estimate” and ground truth the MC estimates obtained by the 3000 fluxes of the
test set P , denoted by MCP . Then, we compare MCP with: (i) the MC estimates given by a subset
of ϑ = 500 fluxes sampled from P , denoted by MCP|ϑ ; (ii) the MC estimates given by the GINN
predictions over the 3000 transmissivities in P , denoted by MCGI. The target of the experiment is
to investigate if the GINN trained on ϑ samples returns estimates closer to MCP than the estimates
MCP|ϑ . Looking at Table 1 and Figure 3, we clearly see that estimates MCGI are closer to the
estimates MCP ; on the contrary, estimates MCP|ϑ are farther from MCP . Therefore, we can state
that GINN model trained on θ = 500 samples allows to improve the MC outflow moment estimates
obtained directly with the same amount of DFN flow simulations. We can also analyse the results
by the point of view of the computational cost. We recall that a GINN can make thousands of flux
predictions in the order of the seconds, while DFN simulations take hours for hundreds of simulations,
so that the computational cost of each MC estimate can be roughly evaluated by the number of DFN
simulations it requires. The MC estimate obtained by the GINN predictions costs just θ simulations.
By contrast, the MC estimate MCP requires hours of computation for the additional 2500 DFN
simulations. Hence, at the cost of ϑ = 500 DFN simulations, the GINN-based method returns an MC
estimate very close to MCP and in practice it allows to save 2500 simulations.
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Figure 3: Monte Carlo estimates of the DFN158 total outflux (right: mean, left: std). Outflux
estimates by DFN simulations (blue) or GINN prediction (orange) trained on ϑ = 500 simulations.

4 Summary and Overview

We proposed a new spatial graph NN architecture for flux prediction in DFNs to exploit the graph
structure of the DFN models. The new NN architecture is characterized by Graph Informed layers;
these layers are defined with respect to the adjacency matrix of a given graph and re-define the
convolution operation for graph-structured data in a new tensor formulation that allows multivariate
input features (K ≥ 1) and multivariate output features (F ≥ 1). We tested the applicability of
GINNs to a test case DFN, comparing the MC estimates obtained through the best-GINN predictions
with a ground truth and with the MC estimates obtained with a number of simulations equal to the
training set size. The experiment results showed that the GINN allowed to obtain a more accurate
estimate of the moments, with a significant saving in computational cost. Moreover, we observe that in
our experiments GINNs performances usually improve if depth increases (see A). This characteristic
is extremely interesting because previous works suggest that going deeper in a graph neural network
is not usually beneficial; indeed, the role of depth in graph NNs is still an open question [11]. Due
to space limitation, our exposition is limited to a single test case and further experiments could
strengthen the impact of our work.

In conclusion, we believe that the proposed GINN architecture could open new possibilities
for all the physical problems that can be faced as regression and function approximation over a
graph-structured domain, especially if it involves multivariate inputs and/or outputs.
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A Appendix

We give more details about the dataset. The dataset is generated assuming a standard deviation of the
sampling of the transmissivity parameter equal to 0.33. The complete dataset can be downloaded
from the URL https://smartdata.polito.it/discrete-fracture-network-flow-simulations/. We use a
subsampling of 3000 thousands of DFN outflow simulation to build the test set P and a second
separate subsampling of other θ = 500 samples to build the training dataset for the GINN models.

We give more details about the grid search conducted over the GINN hyperparameters for the
DFN158 flux regression problem exposed in Section 3. The GINN model is characterized by the
following architecture (see Figure 1): one input layer of shape n, followed by H ∈ N consecutive
GI Layers, each one characterized by F ∈ N filters and activation function f ; the last GI (output)
layer is characterized by a max-pooling operation and a mask with respect to the m indices of the
outflux fractures. All the GI Layers are designed to receive K = F input features per node; the
only exception is the first one where K = 1 (the input transmissivities). We varied the number of
hidden layers H ∈ {3, 5, 7}, the output features of each hidden layer F ∈ {3, 5, 10, 20, 40}, the
activation function f ∈ {relu,elu, softplus,swish} and the mini-batch size β ∈ {10, 50, 100}, with
an early stopping criterion over the validation loss, with patience of 150 epochs. The optimizer is
Adam with starting learning rate 0.001. The best architecture resulted with H = 5, F = 40, f = elu,
β = 10. We observed a robustness of the result wrt the activation function and mini-batch, while the
GINN architecture seemed to be more sensitive to F and H . The GINN implementation make use of
TensorFlow 2.3.1 [22] with Apache 2.0. licence. The training of a GINN model lasts 10 minutes on
average and it is influenced by the early stopping intervention. The grid search has been conducted
on a GPU Nvidia 1080 8GB on a workstation of 4 Core, 8 Threads, 32 GB RAM. All the simulations
have been computed on a workstation with two AMD Opteron Processors, Interlagos type, 12 cores,
Ram 32 GB; the computational time for each simulation is in the order of tens of seconds.
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