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Abstract

A long-standing problem in the design of machine-learning tools for particle
physics applications has been how to incorporate prior knowledge of physical
symmetries. In this note we propose contrastive self-supervision as a solution
to this problem, with jet physics as an example. Using a permutation-invariant
transformer network, we learn a representation which outperforms hand-crafted
competitors on a linear classification benchmark.

1 Introduction

The impact of machine-learning tools in particle physics has been far-reaching, with many of the
traditional phenomenological tools being upgraded or replaced with more powerful and more efficient
alternatives. However, the traditional tools and techniques have been constructed based on physical
insight and symmetries that have been studied for decades, and to make the most of deep-learning
tools this knowledge should be embedded in the network architectures we use. A common choice is
to embed this knowledge in the data through aggressive preprocessing steps, however this limits the
power of the machine-learning tools whose strength lies in extracting non-trivial information from
low-level raw data. This is a long-standing problem which affects all applications of machine-learning
in particle-physics. We discuss self-supervision as the solution to this problem.

Self-supervision refers to optimization tasks that use pseudo-labels in the loss function. The pseudo-
labels are not class labels, but instead are generated from the data in an unsupervised manner. In
our work we consider one specific form of self-supervised learning called contrastive learning [2].
Here the pseudo-labels are generated by taking a single sample from the dataset and applying a
set of transformations (known as augmentations) to this sample. Both the original sample and the
augmented sample are then given the same pseudo-label. We choose to use physically-motivated
augmentations which do not change the properties of the underlying physical object, but will change
its expression in the measurement space, e.g. resulting in different values in a detector. The neural
network can then learn that such pairs of observations represent the same physical object and can
discard irrelevant information accordingly.
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To demonstrate this idea we focus on particle jets. Jets are produced in large quantities at hadron
colliders, and are some of the most complex objects analysed there. Each jet consists of O(10−100)
particles whose substructure contains non-trivial kinematic correlations that can be used to study
the origin of the jet. However there are a number of symmetries and augmentations of the jet under
which these non-trivial correlations should be invariant. The goal therefore is to use self-supervised
contrastive learning to map the raw jet constituent data to a new representation which is invariant to
the pre-defined symmetries and augmentations, but which retains information on these non-trivial
kinematic correlations. This new representation can then be used for downstream tasks.

2 Contrastive learning

In contrastive learning we sample a batch of jets {xi} from the dataset during training, and generate
an augmented batch {x′i} by applying a set of physics-inspired augmentations to each jet in the
original batch. The pseudo-labels are generated by considering pairs of original and augmented jets:

• positive pairs: {(xi, x′i)}
• negative pairs: {(xi, xj)} ∪ {(xi, x′j)} for i 6= j.

The task is to teach the network to map positive pairs close together and negative pairs far apart in the
new representation space. The mapping to this space is defined by f(xi) = zi, with f representing
a transformer network that we will define in Sec. 4. The contrastive loss function [2] used in the
optimization is:

Li = − log
es(zi,z

′
i)/τ∑

j 6=i∈batch

[
es(zi,zj)/τ + es(zi,z

′
j)/τ

] , s(zi, zj) =
zi · zj
|zi||zj |

= cos θij (1)

where the cosine-similarity function s(zi, zj) is the measure the network uses to determine how
similar two jet representations are. Note that due to the definition of the similarity measure, the new
representations are constrained to the surface of a unit hyper-sphere. The minimization of Eq. 1
ensures that the positive-pairs (in the numerator) should be close together in the new representation
space, while the negative-pairs (in the denominator) should be far apart. Bringing positive pairs close
together ensures that the new representation is invariant to the set of symmetries and augmentations
inherited from our prior physics knowledge, while forcing negative pairs apart ensures that the
non-trivial correlations present in the raw data are retained in this new representation.

3 Symmetries and augmentations

The results discussed here use the top-tagging dataset generated for the challenge outlined in [1].
The dataset consists of jets with the transverse momentum pT ∈ [550, 650]GeV and a radius R=√

∆η2 + ∆φ2 = 0.8, originating from either a top-quark or a gluon parton. Details on how this
data was generated are contained within the reference [1]. To a good approximation we can assume
that the constituents of the jets are all massless, meaning we can describe the kinematics of each
constituent with just the transverse momentum pT , the pseudo-rapidity η, and the azimuthal angle
φ. Thus a jet can be written as a collection of constituents xi = {(pT , η, φ)k}i with k labelling the
constituent in the jet and i labelling the jet in the dataset. We applying the following augmentations
to the jets during contrastive learning:

Rotations: The centre of the jet is defined as the pT -weighted centroid of the constituents, and with
R<1 the jet mass is approximately invariant to rotations around this point. There is also no preferred
orientation of the jet substructure as measured in the collider, so these rotations are an approximate
symmetry of the system.

Translations: Rotations in the azimuthal angle φ are of course a symmetry of the system. In addition,
in the limit of massless constituents, translations in the pseudo-rapidity η are also symmetries. This
means we use translations in the η−φ plane as a symmetry of the system.

Collinear splittings: The angular resolution of a detector is unable to distinguish between two
constituents with transverse momentum pT,a and pT , b which are very close together, i.e. ∆Rab�1.
To encode this knowledge into the new representations, collinear augmentations are introduced which
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Figure 1: Visualization of the rotational invariance in representation space, keeping in mind that
s(z, z′) = 1 indicates identical representations. We show JetCLR representation trained without (left)
and with (right) rotational transformations, from the authors of Ref. [5].

randomly select some number of constituents in the jet and split them into two constituents such that

pT,a + pT,b = pT ηa = ηb = η

φa = φb = φ . (2)

IR smearing: From Quantum Field Theory (QFT) we know that the hard-process in a collision
factorizes from the universal soft-gluon emissions, meaning that stochastic augmentations to the soft
radiation in the jet should not alter the physical information contained within it. The augmented jet
is created by smearing the (η, φ) positions of all constituents in the jet by sampling from Normal
distributions as:

η′ ∼ N
(
η,

Λsoft

pT

)
and φ′ ∼ N

(
φ,

Λsoft

pT

)
, (3)

where η′ and φ′ are the new smeared coordinates, and Λsoft =100MeV is a scale that determines the
strength of the smearing relative to the pT . As well as encoding detector- and QFT-related knowledge,
the IR and collinear augmentations will provide an approximate infrared and collinear (IRC) safety
to the new representations. This is a technical requirement of observables that allow them to be
calculated analytically in a perturbative expansion.

4 JetCLR

The contrastive learning is implemented with the following training loop:

1. sample batch of jets {xi} from dataset
2. create augmented set of jets {x′i} by applying each of the augmentations in sequence
3. pass both {xi} and {x′i} through the network to obtain {zi} and {z′i}
4. calculate the contrastive loss and update the network weights

The mapping from raw data to the new observable representation is parameterized by a permutation-
invariant transformer-encoder network. This tool is called JetCLR [5] (Contrastive Learning of Jet
Representations).

The network has the structure described in Ref. [5], consisting of a linear embedding layer, followed
by a transformer-encoder network [10, 11, 13], then summation along the constituent dimension, and
finally a fully-connected head network. The embedding increases the dimension of each constituent
from three to some higher dimension, which is also the dimension of the final representation space.
We found 1000 to perform best in our experiments. Since transformers are equivariant to permutations
of the constituents, and since we subsequently sum over the constituent dimension, our network is
permutation invariant, similar to the Set Transformer [9] and other similar models used in particle
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Figure 2: Comparison of JetCLR with standard hand-crafted representations, from the authors of Ref.
[5]. The solid curve and shaded bands on the JetCLR curve show the mean and standard deviation
over 4 different runs.

physics [8, 12]. The head network is necessary to increase the representational power of the total
network but, following standard practice in contrastive learning [2], it is found that the pre-head output
performs best as a representation for downstream tasks. The description of the hyper-parameters used
can be found in [5].

In addition to permutation invariance, physically-motivated IR-safety can be built into the network.
This is achieved by a combination of pT -dependent masking in the attention layers of the transformer,
as well as a pT -dependent weighting in the summation layer, as in Ref. [5].

5 Results

Firstly, it can be established that the representations obtained with JetCLR are invariant to the
symmetries used during training. As an example, we show in Fig. 1 how the cosine similarity
changes as a jet is rotated. Displayed are two different representations, one of which was trained with
rotation augmentations to the data, and the other without. We clearly see that the addition of rotation
augmentations gives the representation space invariance to rotations of the input jet.

Secondly, the JetCLR representations can be compared against other widely-used representations
in the literature. Although the technique is entirely self-supervised, to obtain a measure of the
effectiveness of a jet representation a linear neural network is trained to classify between labeled
top and QCD jets in the representation space. Such a supervised linear classifier test is standard
practice in the self-supervised literature. In Fig. 2 we show a ROC curve comparison of the linear
classifier test results on various representations. The constituents representation is constructed by
ordering all constituents in a jet by their pT , taking the 20 with the highest pT , and flattening the
{(pT , η, φ)j} array into a 60-dimensional vector. The jet images representation [3, 4, 6] encodes the
jet as a gray scale image. Finally the Energy Flow Polynomials (Ref. [7]) are a more sophisticated,
higher-dimensional representation of the jet data that are explicitly IRC safe, and invariant under
rotations and translations by construction. It can be seen that JetCLR outperforms all of these
hand-crafted representations on the linear classifier test.

6 Conclusions

We have presented, with the explicit example of JetCLR, how self-supervision can solve the problem
of embedding prior physics knowledge obtained from theoretical considerations into machine learning

4



tools. We encoded some symmetries through model constraints, such as permutation invariance,
where this is easy to do, and encoded other symmetries, such as rotations, as augmentations in a
contrastive learning framework. We hope that this example will inspire similar work aiming to
incorporate prior knowledge into particle physics applications, or other applications in the wider
physical sciences.
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