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Abstract

We show how to deal with uncertainties on the Standard Model predictions in an
agnos- tic new physics search strategy exploiting artificial neural networks. Our
approach builds directly on the Maximum Likelihood ratio treatment of uncertain-
ties as nuisance parameters for hypothesis testing that is routinely employed in
high-energy physics. After presenting the conceptual foundations of our method,
we first illustrate all aspects of its implementation and extensively study its perfor-
mances on a toy one-dimensional problem. We then show how to implement it in a
multivariate setup by studying the impact of two typical sources of experimental
uncertainties in two-body final states at the LHC.

1 Introduction

Experimental results in the last several decades consolidated our knowledge of fundamental physics
as described by “standard” theoretical models such as the Standard Model (SM) of particle physics
or the ΛCDM model of cosmology. On the other hand we lack understanding of the microscopic
origin of several ingredients of these models, such as the Dark Matter and Dark Energy densities in
ΛCDM , the Electroweak scale and the Yukawa couplings structure in the SM. These considerations,
as well as the theoretical incompleteness of our current theory of gravity, guarantee the existence of
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new fundamental laws waiting to be discovered, but do not sharply outline a path towards their actual
experimental discovery. The development of signal-model-independent strategies to search for new
physics emerges in this context as a priority of fundamental physics.

In the present work we consider the model-independent method proposed and developed in Ref.s
[1, 2] for multivariate data analysis at particle colliders such as the Large Hadron Collider (LHC).
The method aims at testing some data sample D = {x1, . . . , xND} for the presence of significant
departures with respect to a Reference Model “R”. The physical knowledge of the Reference Model
(the SM) can be used to produce a synthetic set of Reference dataR = {x1, . . . , xNR}, which plays
conceptually the same role as the background dataset in many traditional searches. In general it
could be either obtained by a first-principle Monte Carlo (MC) simulation based on the fundamental
physical laws of the Reference Model, or with data-driven methods. In both cases,R results from
a knowledge of the Reference Model that is unavoidably imperfect. Therefore it provides only an
approximate representation of the data distribution in the “R’ (or background) hypothesis. In the case
of MC samples, for instance, the uncertainties emerge from all the ingredients of the simulations
such as the value of the Reference Model input parameters, of the parton distribution functions and of
the detector calibration parameters, as well as from the finite accuracy of the underlying theoretical
calculations. The impact of all these uncertainties must be assessed and included if needed in any LHC
analysis. We define here a strategy to deal with them in a framework for signal-model-independent
new physics searches. We ignore instead uncertainties of statistical origin associated with the finite
size of the Reference sample. Namely we assume that the Reference sample size NR is a factor
from ten to hundred times bigger than the expected number of data events N(R), such that the data
statistical fluctuations are expected (and can be checked) to dominate over the one of the Reference
sample.

2 Method

Our treatment follows closely the canonical HEP profile likelihood approach [3]. Each source of
imperfection in the knowledge of the Reference Model is associated with a nuisance parameter ν
whose (true) value is unknown but statistically constrained by some measurements performed on an
auxiliary dataset A and included in the likelihood as a ν-dependent term L(ν|A). The Reference
Model prediction for the distribution of the features variable x depends on the set of nuisance
parameters ν and is therefore interpreted as a composite (parameter-dependent) statistical hypothesis
Rν , to be identified with the null hypothesis H0 of the statistical test. The alternative hypothesis H1

is defined as a local (in the features space) rescaling of the Reference distribution by the exponential
of a neural network function f(x;w)

n(x|Hw,ν) = ef(x;w)n(x|Rν) .

The exponential parametrization guarantees n(x|Hw,ν) to be positive and allow to use f(x;w)
directly as an approximant of the log ratio of the distributions. Clearly, the H1 hypothesis is also
composite. We denote it as Hw,ν , where w represents the trainable parameters of the neural network.
The neural network architecture and hyper-parameters are problem-dependent. The general criteria
for their optimization are discussed in Ref [2] in greater detail. The method exploits the neural
network flexibility to approximate the optimal test statistic t based on the Maximum Likelihood
log-ratio test statistic between the Rν and Hw,ν hypotheses:

t(D,A) = 2 log
max
w,ν

[L(Hw,ν |D,A)]

max
ν

[L(Rν |D,A)]
.

In order to proceed, we consider the special point in the nuisance parameter space that corresponds to
their central-value determination as obtained from the auxiliary data alone and we set it as the origin.
We further postulate that new physics is absent in the auxiliary data. Namely, that the distribution of
the auxiliary data in the Hw,ν hypothesis is the same one as in hypothesis Rν

L(Hw,ν |A) = L(Rν |A) = L(ν|A) .

Therefore the total likelihood of Hw,ν is

L(Hw,ν |D,A) = L(Hw,ν |D) · L(ν|A) ,
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where L(Hw,ν |D) is the extended likelihood

L(Hw,ν |D) =
e−N(Hw,ν)

ND!

∏
xi∈D

n(xi|Hw,ν) .

The central-value Reference hypothesis R0 predicts a distribution for the variable n(x|R0), that can
be regarded as the best pre-fit guess for the actual SM distribution of x. The likelihood of R0 is thus
conveniently used to “normalize” the numerator and denominator likelihoods in our test statistic
formulation and thus express the latter as the difference of two terms

t(D,A) = τ(D,A)−∆(D,A) ,

where τ involves the maximization over the neural network parameters w and over ν

τ(D,A) = 2 max
w,ν

log

[
L(Hw,ν |D)

L(R0|D)
· L(ν|A)

L(0|A)

]
,

while the “correction” term ∆ does not contain the neural network and involves exclusively the
Reference hypothesis

∆(D,A) = 2 max
ν

log

[
L(Rν |D)

L(R0|D)
· L(ν|A)

L(0|A)

]
.

The τ term can be seen as a measure of the total discrepancy between the distribution of the data and
the one expected in the R0 hypothesis; the ∆ term is instead a measure of the only discrepancies that
can be shaped as systematic effects. Both τ and ∆ are positive-definite and since they contribute with
opposite sign, the test statistic t will emerge from a cancellation between these two terms. t is then a
measure of the discrepancies that are relevant in the search for New Physics. The cancellation is more
and more severe the more the data happen to favour a value of ν that is far from the central value.

Learning the effect of nuisance parameters The correction term ∆ is of interest for any statis-
tical analysis to be performed on the dataset D, as it provides a first gross indication of the data
compatibility with the Reference hypothesis. In particular a sizeable departure of the best-fit nuisance
parameters from the central values should be monitored the same way a large “pull” of a nuisance
parameter is monitored in a ML fit.

To evaluate ∆, we employ an un-binned L(Rν |D) likelihood, obtained by reconstructing the ratio
between the n(x|Rν) and n(x|R0) distributions locally in the features space. This is achieved by a
rather straightforward adaptation of “likelihood-free inference” techniques developed in the literature.
In particular our implementation follows closely the “Quadratic Classifier” approach of Ref [4] to
which we refer the reader for a more in-depth exposition. The basic idea, is to employ a polynomial
approximation for the dependence of the distribution on the nuisance. The coefficient functions of
the polynomial will be approximated by suitably trained neural networks. For instance in the case of
a single nuisance parameter ν, we would write

r(x; ν) ≡ n(x|Rν)

n(x|R0)
= exp

[
ν δ1(x) +

1

2
ν2 δ2(x) + . . .

]
,

with the Taylor series expansion in the exponent truncated at some finite order. The exponential
parametrization here adopted guarantees that the ratio is positive and thus a well defined argument
for the logarithmic function which is applied to it when the test statistic is computed.

Maximum likelihood from minimal loss The τ term involves the Hw,ν hypothesis, which foresees
possible non-SM effects (i.e., departures from the Reference Model) in the distribution of x that
can be parametrized by the neural network f(x;w). The calculation of τ involves the maximization
over the neural network parameters w and the nuisance parameters ν, that will be performed by
running a learning algorithm considering both w and ν as trainable parameters. The algorithm will
exploit the knowledge of the δ coefficient functions that is provided by neural networks as previously
explained. Since these networks describe our knowledge of the systematic effects on the input
variables, they don’t have to be fitted to the data; they are thus pre-trained and treated as constant
during the evaluation of τ .
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By making use of the parametrization of n(x|Hw,ν) in terms of the neural network and by combining
it with the definition of r(x; ν) previously introduced we can rewrite τ in the form

τ(D,A) = 2 max
w,ν

{∑
xi∈D

[f(xi;w) + log(r(xi; ν))]−N(Hw,ν) + N(R0) + log

[
L(ν|A)

L(0|A)

]}
.

The first, third and fourth terms in the curly brackets are easily accessible. The first one depends on
the neural network f(xi;w), as well as on the coefficient functions δ through r(xi; ν). The second
term, which is the total number of events in the Hw,ν hypothesis, is not easily available and requires
us to employ the Reference data setR = {x1, . . . , xNR}, to approximate it as

N(Hw,ν) '
∑
e∈R

we exp [f(xe;w) + log(r(xe; ν))] .

Here each event is weighted in such a way that the normalization sums up to N(R0). Since the
accuracy of the approximation improves with the size of the Reference sample, we require NR �
N(R0) ∼ ND; in this way the statistical variability of τ is expectedly dominated by the statistical
fluctuation of the data sample D. We can then express τ as

τ(D,A) = −2 min
w,ν

{
L
[
f(·;w), ν; δ̂(·)

]}
,

where L has the form of a loss function for a supervised training between the D andR samples

L
[
f(·;w), ν; δ̂(·)

]
= −

∑
xi∈D

[f(xi;w) + log(r(xi; ν))]+
∑
e∈R

we

[
ef(xe;w)+log(r(xe;ν)) − 1

]
−log

[
L(ν|A)

L(0|A)

]
.

The training procedure is relatively straightforward to implement in standard deep learning packages,
provided the loss depends on ν through analytically differentiable functions. This is the case for
r(x; ν), and typically also for the auxiliary likelihood ratio.

Our strategy to evaluate τ is an extension of the one developed in Ref.s [1,2]. In the absence of
nuisance parameters, the loss L reduces to the one of Ref.s[1,2], plus the auxiliary log likelihood ratio
that carries all the dependence on ν and can be minimized independently. The latter term however
cancels in the test statistic t when subtracting the correction term ∆ and the results of Ref.s[1,2] are
fully recovered.

3 A multivariate case study: two-body final state at the LHC

We test the previously outlined strategy on a multivariate case study which is inspired by the
realistic problem of model-independent new physics searches in two-body final states at the LHC
(a detailed description of the simulated datasets can be found in Ref [2]). A two-body final state
can be characterized in terms of the five kinematical variables, the transverse momenta and the
pseudorapidities of the individual particles and their relative azimuthal angle, that we choose as input
features for our method. We separately analyze three different scenarios given either by opposite-
signed muons, electrons or taus in the final state. The kinematical distributions are quite different
in the three cases, but we do not expect these differences to impact the technical viability of our
strategy, which we aim at demonstrating. The total cross-section of the process is also different.
We compensate for this effect by selecting the integrated luminosity of the dataset that makes the
total number of expected events N(R0) equal to 8500 for all the cases. In this way, the only relevant
difference between muons, electrons and taus final states resides in the increasing large systematic
uncertainties that affect the corresponding SM predictions.
We consider two Gaussian nuisance parameters νN and νS describing the uncertainty on the event
yield normalization and on the transverse momenta scale as exponential factors. We adopt a simple
modeling of the normalization uncertainties by a global factor with standard deviation σN = 2.5%.
As for the scale factor, we consider three representative scenarios: a 5 × 10−4 and 15 × 10−4

uncertainty errors respectively for |η| < 2.1 and |η| ≥ 2.1 in the muon-like regime; 3× 10−3 and
9×10−3 for the electron-like; 3×10−2 at any η in the tau-like regime. The effects in the two regions
of η are fully correlated. A lower threshold to the two leptons invariant mass is applied to discard the
Z pole from the dataset and thus keeping the scale effects manageable. This lower threshold is set to
100 GeV for the muon and electron-like regimes and to 120 GeV for the tau-like regime.
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For the neural network model involved in the computation of τ , we consider a fully connected feed-
forward neural network with sigmoid activation functions for the hidden layers and a single linear
output. We define a weight clipping parameter which sets up an upper bound constraint to all the
trainable parameters magnitude. In Ref [2] it was showed that the weight clipping parameter can be
tuned to make the distribution of the test statistic under null hypothesis compatible with an asymptotic
χ2
df distribution whose number of degrees of freedom equals the number of trainable parameters of the

chosen neural network. This consideration still applies to the extended version of the algorithm here
proposed. According to this prescription, we select a neural network with three layers and five nodes
each and a weight clipping value of 2.16 for the muon and electron like regime and 2.38 for the tau-like
regime. Moreover, we model the effect of νN and νS in r(x; νN, νS) using an analytical description
for the normalization effect and the un-binned likelihood approach mentioned in the previous section
for the momentum scale effect. For the latter, a quadratic polynomial approximation is used in
all three systematic uncertainties regimes. For the parametric models set up, there are no further
prescriptions than those already mentioned in Ref [4]. For all δ coefficients we consider architectures
of five layers of ten nodes each and relu activation function. The quality of the approximation is
verified by validating the method. This also allows for an optimal choice of the training epochs. The
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Figure 1: Five examples of the empirical test statistic distribution for 100 experiments, before (τ ) and
after (t) applying the ∆ correction, under different true underlying hypothesis of the data. The blue
line denotes the target χ2 distribution for the test statistic in the reference hypothesis; the number
of degrees of freedom, 96, coincides with the number of trainable parameters of the neural network
model used for the experiments.

validation of the strategy consists in running experiments using SM-like synthetic datasets generated
with systematic effects ν∗S,N = ±σS, N . We observe that any nuisance-induced source of discrepancy
detected by the τ term is correctly canceled by the corresponding ∆ term, resulting in a final test
statistic t which is compatible with the asymptotic χ2

df (three panels on the left side of Figure 1).

Furthermore, we apply the strategy on two BSM benchmark scenarios. In the first one a new vector
boson with the same couplings to SM fermions as the SM Z boson and mass of 300 GeV is injected
on top of the SM background (Z ′ scenario); in the second one we insert a dimension-6 4-fermion
contact interaction cW

Λ JaLµJ
µ
La (EFT scenario). We run experiments on data following the BSM

models and with generated systematic effects ν∗S,N = ±σS,N. A residual discrepancy surviving the
cancelation hints at the presence of New Physics (two panels on the right side of Figure 1). The
median Z-score of the method can be compared to that of a typical model-dependent analysis (Zref );
we observe similar gains in both the resonant and non-resonant scenarios.

4 Conclusion and outlook

In this work we present a new model independent strategy to compute a p-value for the discovery of
unspecified New Physics models in presence of systematic uncertainties on the reference hypothesis.
In the case of resonant signals, similar results can be achieved with alternative techniques, like the
BumpHunter [5], provided that the variable manifesting the resonance is known. On the other hand,
the proposed approach is able to detect resonances even when the variable of interest is not considered
as an input of the strategy, learning non trivial combinations out of low level features. Moreover, it is
sensitive to various New Physics signatures at the same time and with similar performances; general
approaches that can handle multivariate problems and are sensitive to non-resonant signatures are still
missing in the landscape of the model independent analysis strategies. In this respect our solution is a
novel and promising tool for discovery new phenomena at the LHC experiments.
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