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Abstract

In the coming years, a new generation of sky surveys, in particular, Euclid Space
Telescope (2022), and the Rubin Observatory’s Legacy Survey of Space and Time
(LSST, 2023) will discover more than 200,000 new strong gravitational lenses,
which represents an increase of more than two orders of magnitude compared to
currently known sample sizes [1]]. Accurate and fast analysis of such large volumes
of data under a statistical framework is therefore crucial for all sciences enabled by
strong lensing. Here, we report on the application of simulation-based inference
methods, in particular, density estimation techniques, to the predictions of the
set of parameters of strong lensing systems from neural networks. This allows
us to explicitly impose desired priors on lensing parameters, while guaranteeing
convergence to the optimal posterior in the limit of perfect performance.

1 Introduction

Strong gravitational lensing is a phenomenon in which the light rays of distant galaxies are deflected
by the gravity of foreground matter, resulting in the production of multiple images. It is a powerful
probe that can map the inner distribution of matter in individual lens galaxies to reveal invaluable
information about the physics of the dark matter particle [2]. It can also provide precise estimates
of the expansion rate of the Universe (the Hubble constant), an important measurement, given what
is referred to as a current "crisis in cosmology" (a significant tension between the measurements
of this parameter by multiple probes) [3]. Strong lensing can also be used to study the magnified
images of background galaxies, which are typically some of the most distant galaxies of the Universe,
effectively working as a natural telescope [4].

In recent years, convolutional neural networks have been shown capable of providing accurate point
estimates of the parameters describing these strong lensing systems more than 10 million times
faster than traditional methods [5]. Subsequent works have expanded this result to also obtain
uncertainty estimates for the predictions made by neural networks. This has been done using
approximate Bayesian neural networks trained with variational inference [6]. Despite their success at
producing accurate measurements in controlled experiments, these procedures involve many levels
of approximations (e.g., the choice of the variational distributions for the outputs and the network
weights), which cannot be easily quantified or controlled, possibly resulting in biased estimates.
Additionally, despite their name, they do not offer a truly Bayesian inference framework for the lens
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parameters: there is no clear way to impose explicit priors on them. The fact that rigorous uncertainty
quantification is crucial for the science goals enabled by strong lensing suggests that more attention
should be given to the exact form in which this inference problem is formulated.

This is fortunately possible, thanks to advances in simulation-based inference methods [[7,8.9]]. In this
work, by computing the mean of the approximate posteriors provided by Bayesian neural networks and
treating them as compressed statistics, we show that it is possible to learn the likelihood function of the
compressed statistics given the true lensing parameters from simulations. We calculate the coverage
probabilities of sampled posteriors using this likelihood and show that they are accurate while not
requiring any tunable calibration process of hyperparameters. This procedure is computationally
efficient, allowing the posteriors of hundreds of thousands of lenses to be calculated with minimal
computational resources.

2 Methods

Simulations Strong lensing simulations use the lens equation to relate the coordinates of the image
plane @ to the coordinates of the source plane 3. This relation depends on the scaled deflection angle
« through

B=0-a. (1)
where « is computed from the mass distribution in the lensing structure.

Our simulations are made of a Singular Isothermal Ellipsoid (SIE) with added external shear for
the lensing structure and an elliptical Sérsic background source. In total, seven parameters are
needed to describe the lens and six for the background source. We generate simulations by randomly
sampling the lens and source parameters from a uniform distribution, spanning a wide range of
lensing configurations. Each simulation contains pixel-wise independent Gaussian noise with standard
deviation chosen from a uniform distribution between 1% and 10% of the peak lens surface brightness.
Additional information on the method used for generating strong lensing simulations can be found in
[S]. Examples of our lensing simulations are shown in Fig.

Data compression We train an approximate Bayesian neural network to predict the distribution of
the lens and background source parameters from strong lensing images. Approximate BNNs can be
used with variational inference to represent the marginalized posterior distribution p(6|z) as

p(6lz) ~ / p(6lz, w)g(w)dw, @

where g(w) is the variational distribution of the network weights. Similar to [6]], ¢(w) is chosen to be
a Bernoulli random variable multiplied by the network weights, effectively setting a random number
of weights to zero. In practice, this is achieved using dropout [[10] on the output of each network
layer except the final layer. The distribution over the target lensing parameters p(6|xz, w) is chosen to
be a Gaussian mixture model, expressed as

K

p(0|z,w) = Zqﬁk(x,w)./\f(ﬂ; Oy (x, w), i (z, w)), (3)

k

where ¢, ék and X;, represent the weight, mean and covariance matrix for each of the K mixture
components.

Sampling from the approximate marginalized posterior p(6|z) is done by first feeding many times
the input z to the BNN in order to get different predictions for p(6|z, w), where each prediction is
made from a different set of weights w due to random dropout. Then, data points are drawn from
these predicted distributions, forming a set of samples that cover the distribution p(0|x).

We train a two-component BNN with 20% dropout rate and another with no dropout, essentially
predicting a distribution over p(f|x; w) parametrized by a fixed set of network weights. After training,
the BNNs are used to get compressed statistics 6(x) of lensing simulations (by computing the mean
of predicted posteriors), which, along with the true simulation parameters 6, serve as training data for
the mixture density network. The main reason for obtaining our point estimates from these networks
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Figure 1: An example of the sampled posterior from a BNN with and without dropout, and from
likelihood MDN:ss trained using compressed statistics of these respective BNNs. Sampling using the
MDN likelihood allows for explicitly defining a prior over lens parameters, which in our case is a
uniform distribution.

(instead of training a simple CNN trained with a Mean Square Error loss, for example) is to be able
to compare the results of our likelihood-free inference method to approximate BNN methods for the
same network, same training, and same performance.

Density estimation Mixture density networks (MDN) are neural networks that model conditional
probability densities as a mixture of parametric distributions. Typically, the parametric model is
chosen to be a mixture of Gaussian distributions similar to Eq. [3] However, an MDN models a
conditional probability density parametrized by a fixed set of trained network weights w, instead of
assuming a variational distribution g(w) over the weights.

The network uses as input 6 and the Gaussian noise standard deviation used in the simulations and
outputs a prediction for the parameters ¢, u, and 3 to model the distribution over 6. Consequently,
these parameters are conditioned on the input given to the network, which, in this case, gives us a
model for the likelihood. The network architecture is a simple two layer feedforward neural network
predicting a two-component mixture model. In order to sample from the posterior, we use this
modelled likelihood with the affine-invariant MCMC algorithm implemented in the Python package
PYDELFI [11]. The algorithm is written entirely in Tensorflow, allowing for GPU accelerated
MCMC sampling.
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Figure 2: Results from the accuracy test conducted from predicted posteriors over a set of 10000
lensing simulations. For both BNNs, with and without dropout, the predicted posteriors are considered
under confident. In the case of the MDN likelihood, this test indicates that the sampled posteriors are
on average perfectly calibrated.

Accuracy test To evaluate the accuracy of the predicted posteriors, we calculate the coverage
probabilities following [6l [12]]. Simply put, the test is based on the idea that for an accurate posterior,
the true value should be found % of the time in a region that encompasses % of the total probability.

To perform this test, we generate a set of 10000 lensing simulations and get samples from their
predicted posterior distributions. For each simulation, we compute the distance between the true ¢
and the predicted lens parameters 0 based on a chosen distance metric. Similar to [12]], we define this
distance metric as A A

d(w) = (z = 0)" - Ba - (z —0), )
where ¥, is the empirical covariance matrix of true lensing parameters over our entire set of
simulations. For every simulation, we compute the fraction of posterior samples that fall within
the distance between the true and mean predicted lens parameters. This gives us an estimate of the
probability volume needed to include the true value.

We then check over the entire set of simulations the number of times the truth is found within some
arbitrary probability volume x%. If the truth falls within this volume 2% of the time, then the
predicted posteriors are on average perfectly calibrated. Results of this test are shown in

3 Results and discussion

An example of predicted posterior distributions of lens parameters marginalized over the source
parameters is shown in Fig. [T} Although both BNN posteriors appear to be biased, the method using
the modelled likelihood remains accurate, despite being trained on compressed statistics from these
BNNs. This makes density estimation a powerful alternative for inference: the model learns a direct
mapping between 6 and 6. Therefore, even if the compressed statistics are heavily biased due to the
BNN having inadequate properties (e.g., using a simplistic architecture, badly calibrated dropout rate
or under training the network), accurate posteriors can be obtained given that the true distribution is
well modelled by the chosen parametric distribution. Fig. 2] shows the results of coverage probability
tests, indicating near perfect accuracy for the simulation-based method without the need for any
manual tuning.

Although sampling the posterior using an MDN likelihood required running an MCMC, this proved
to be extremely fast. On average, we are capable of running MCMC chains for 200 different posterior
predictions in parallel, each sampling approximately 10* samples per second using a single NVIDIA



V100 GPU. Having 10° posterior samples for each of the 10000 lensing simulations used in Fig.
took approximately 20 minutes. This shows that LFI density estimation of predicted lensing
parameters is well suited for inferring the posterior of tens of thousands of upcoming lenses in a
quick and accurate manner.

Although the SIE model has been extremely successful in representing real lensing galaxies [13],
background sources can have much more complicated morphologies than the elliptical Sérsic model.
This means that the number of parameters needed to describe the source may be too large for MDNSs.
In future work, we aim to address this issue by training a generative model for the reconstruction of
background sources, leveraging the ability to sample many realizations of the source, which we can
use to marginalize over it when modelling the distribution of the SIE lens parameters.

It is important to note that the simulations used in this paper did not include foreground effects
often present in real strong lensing data such as stellar light from the main lens. Traditionally, these
have been often masked out when sampling an explicit closed-form for the posteriors, potentially
resulting in biased estimates. In simulation-based inference, these artifacts would simply be added to
the simulations used to train the BNN in order to include their contributions in the final predicted
posterior. Although the inference of the lensing compressed statistics may be less precise, the method
used here should still converge towards accurate posteriors.

In the future, we will further evaluate the performance of our model beyond the accuracy test shown
in Fig. |2] For this, we plan on using the multidimensional Kolmogorov-Smirnov (KS) test proposed
in [14]. Generally, the KS test in dimensions higher than one is ill-defined. The method developed in
[14] leverages the fact that the total probability mass ¢ contained in a region of highest probability
density (HPD) is a unique one-dimensional statistic. Any HPD region is defined by the boundary
where the probability values within are greater than at some sample x. The key idea is that the values
of ((z) for repeated samples x follow a uniform distribution if « is sampled from the probability
distribution where the HPD region is taken from. For our purpose, we can use this to verify whether
the true lensing parameters can be accurately sampled from the predicted posteriors. This is done by
means of a simple one-dimensional KS test which verifies the null hypothesis that ( computed using
our predicted posteriors follows a uniform distribution.

We would like to emphasize that the purpose of obtaining compressed statistics from a BNN rather
than a deterministic CNN is so that we may compare its predicted posteriors with the ones obtained
using the density estimation method. However, it is unclear at the moment if using compressed
statistics based on samples obtained from BNNs with a non-zero dropout rate could make the density
estimation task more difficult: it may be necessary to consider a larger MDN training set or a more
expressive likelihood model to better capture the potential added noise that dropout might induce in
the compressed statistics. For now, this does not seem to be the case based on Fig. Q the two MDN
models trained on compressed statistics from 0% and 20% dropout BNNs showed on average similar
levels of accuracy. The effects of dropout on the MDN-based posteriors will be further explored as
we plan on evaluating the performance of our method on additional tests such as the multidimensional
KS test described above.

4 Broader Impact

This work is contributing to the development of uncertainty estimation methods for the accurate
analysis of astronomical data using deep learning. The proposed approach could be applied to other
problems in other domains where accurate and detailed quantification of uncertainties is crucial,
and its impact could be most important in cases where high-dimensional posteriors need to be
characterized.
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Figure 3: Examples of generated lensing simulations.



	Introduction
	Methods
	Results and discussion
	Broader Impact
	Appendix

