
A New sPHENIX Heavy Quark Trigger Algorithm
Based on Graph Neural Networks

Yimin Zhu
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794

yimzhu@cs.stonybrook.edu

Tingting Xuan
Department of Applied Mathematics & Statistics

Stony Brook University
Stony Brook, NY 11794

tingting.xuan@stonybrook.edu

Giorgian Borca-Tasciuc
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794

giorgian.borca-tasciuc@stonybrook.edu

Yu Sun
Sunrise Technology Inc.

Center of Excellence Wireless and Information Technology
Stony Brook, NY 11794

yu.sun@sunriseaitech.com

Abstract

Triggering plays a vital role in high energy nuclear and particle physics experiments.
Here we propose a new trigger algorithm design for heavy charm quark events
in proton+proton (p+p) collisions in the sPHENIX experiment at the Relativistic
Heavy Ion Collider (RHIC). This trigger algorithm selects a charm event created
in p+p collision by identifying the topology of a charm-hadron (D0) decays into
a pair of oppositely charged kaon and pion particles. Classical approaches are
based on statistical models, relying on complex hand-designed features, and are
both cost-prohibitive and inflexible for discovering charm events from a large
background of other collision events. The proposed neural network based trigger
algorithm takes into account unique high level features of charm events, using a
stack of images that are embedded in a deep neural network. By incorporating
two state-of-the-art graph neural networks, ParticleNet and SAGPool, we can
learn high-level physics features and perform binary classification with simple
geometrical track information. Our model attains nearly 75% accuracy and only
requires moderate resources. With a small number neurons and simple input, our
model is designed to be compatible for hardware acceleration and thereby enables
extremely fast decision modules for real-time p+p collision events in the upcoming
sPHENIX experiment at RHIC.

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).



R	~	4
cm

sPhenix Trigger	Detector	along	the	beam	pipe

Figure 1: A simulated event display in the sPHENIX experiment.
The lower left corner shows the cross-sectional view of the fast
silicon detectors that is located in the center of the sPHENIX exper-
iment and plays a vital role in controlling the quality and volume of
physics event data. The lower right corner shows that sPHENIX’s
trigger consists of three layers of the MVTX. Each sensor stave
contains two-dimensional 0.5K × 9K cylindrical pixel detector
plane, and there are 48 of them in total. The trigger is essentially
a high-speed camera, continuously taking 250-megapixel images
for p+p collisions happening at ~10MHz, and inspecting image
patterns to decide whether to keep or discard each individual image.

Figure 2: The pixels of hits are extremely sparse for a single p+p
collision event. The meaningful connections among pixels are the
consequence of particle movement across the 3D toy Detector with
ten layers (channels). The red track captures an interesting particle
generated from heavy ion collisions.

1 Introduction
sPHENIX trigger algorithm Design: In high-energy nuclear and particle physics experiments, a
trigger is a system that uses a specific set of criteria to rapidly decide which collision events to keep
when only a small fraction (typically less than 1%) of the total collision events can be recorded. Due
to real-world limitations in computing power, data storage capacity, and logging rates, the trigger
algorithm is essential for identifying the events of interest to record during the high-rate p+p collisions
for later analysis. According to Adare et al. [2015], the Monolithic-Active-Pixel-Sensor based silicon
Vertex detector system (MVTX), designed for the sPHENIX experiment at Relativistic Heavy Ion
Collider (RHIC), is a precision 3D tracking device to generate a stack of 3D hit images of charged
particle produced in the proton+proton (p+p) collisions. The p+p collisions will happen at a rate as
high as about 10MHz, while the sPHENIX Data Acquisition System (DAQ) can only take up to a
15kHz worth of collision events. A trigger algorithm is required to reject non-interesting collision
events in order to record important physics events with high efficiency within the sPHENIX DAQ
bandwidth. Events that contain heavy quarks in the initial production in p+p collisions are of great
interest and importance for the sPHENIX physics program. Nevertheless, the majority of such events
can not be detected by the existing calorimeter-based trigger algorithms. This paper proposes to
develop an intelligent Graph Neural Network (GNN) based trigger algorithm that automates the
learning of event representations and features, and predicting the key physics properties of such
events, i.e., particle tagging. Our existing embedded deep neural network system provides a matching
solution to recognize which stack of images from the MVTX and other sPHENIX detectors have
the sought pattern. In this paper, we develop a two-stage GNN-based trigger algorithm to decide
whether to record the events or not, with the processed track information retrieved from the captured
3D sparse images by the sPHENIX detectors.

Extremely Fast Heavy Quark Event Trigger Design for Nuclear Physics Detectors with Deep
Learning Systems A fast real-time trigger algorithm in the sPHENIX experiment needs to identify
specific types of physics production events in p+p collisions.

Deep neural networks have bought tremendous advancements in the domains of data processing.
These data sets typically share common characteristics, such as well-defined data structures, consistent
signal to noise ratio (SNR), and regular neighborhood. On the other hand, physics experiments do
not have these regularities. They often use sparse detector images in Figure 2 to minimize processing
costs on blank pixels. As a result, they cannot benefit from the popular convolutional neural network
(CNN) designed for natural pictures to indiscriminately treat sparse pixels as “noise” instead of
signals. Recently, there is growing interest in extending deep learning approaches to graphs that
model pair-wise relationships among data entities. Graph data is more difficult to handle, because
each node can have an arbitrary number of neighbors. Motivated by the CNN, we will design novel
GNN algorithms on raw event data to learn both local and global features and infer the local properties
(tracks and jets) and global identifiers (event tagging).

The paper’s contributions are that it identifies interesting physics events with great accuracy and
outperforms the state-of-the-art methods that requiring sophisticated offline physics models and

2



Figure 3: Cluster of Tracks

Figure 4: Trigger Prediction
reconstruction. Moreover, our model has a small number of parameters and is compatible with
resource-constrained hardware accelerators. The model relies only on geometric properties that are
collected by a silicon detector with extremely low latency.

2 Model Architecture
We design a two-stage model. Our first stage clusters track based on their secondary vertex. Our
second stage performs trigger predictions from the clustered tracks. Instead of working with raw
hits, our GNN treats each track as a graph node and learns the track configuration in an event. A
track-based (as opposed to hit-based) graph affinity matrix is much smaller, and track-level physics
characteristics can be directly used to tag events in the physics processing pipeline.
2.1 Cluster Tracks based on ParticleNet
A track cluster is a collection of tracks with the same secondary vertex. Given a collection of n tracks
from the event reconstruction, we need to identify whether any pair of tracks share the same secondary
vertex. Figure 3 shows the clustering system based on ParticleNet (Qu and Gouskos [2020]). That
is a neural network architecture based on Dynamic Graph Convolution Neural Network Wang et al.
[2019] that operates directly on particle clouds. Unlike Set2Graph by Serviansky et al. [2020] which
initially treats all nodes as connected, our custom ParticleNet uses the k nearest neighbours to filter
out spurious connections, focusing on those pairwise relationships with minimal distance. Our
ParticleNet incorporates the track geometry information and directly learns the high-level features
in the hierarchical event structure. It does not suffer from the over-connection issue in Set2Graph
and shows superior performance in our experiments. ParticleNet substitutes the neighbours’ feature
vector in the edge convolution block and calculates the difference to its central point. We implement
the edge function in the edge-convolutional block with a multilayer perceptron (MLP) and use mean
aggregation. We also adopt the intertrack distance as the distance metric to select the initial k nearest
neighbors. The output layer consists of a pairwise link predictor based on an MLP that takes the
learned node features and predicts the connectivity probability of each pair of tracks.
Loss Function The objective of ParticleNet is to minimize the error in link prediction. Since the
distance between the primary and secondary vertices are no more than a few hundred microns, we
adopt the weighted graph Laplacian Loss as a regularization term in the objective function to penalize
false inter-track connections. Our loss function thus contains two terms: the weighted Cross Entropy
loss (CELoss) and the Laplacian loss.

Our dataset is balanced for trigger/nontrigger events. To ensure balance on link prediction, we
calculate CELoss on the subgraph with the same number of true and false edges. For the non-decay
events, we use all the edges.

Our experimental data shows that the close distance between the primary and secondary vertices
leads to a highly sensitive prediction model with an excessive number of mispredicted links. To
mitigate the problem, we introduced Graph Laplacian regularization to ensure two interconnected
tracks must have the same secondary vertex: Llap = trace(O>(D̂ − Â)O), where O ∈ Rn×3 is the
coordinate matrix of the ground truth secondary vertex of each track, D̂ is the degree matrix, and Â
is the learned affinity matrix based on the predicted links by ParticleNet.
2.2 Trigger Prediction via SAGPool
We design a graph-level prediction model that classifies the input event graph into trigger and non-
trigger events based on the predicted inter-track connection and track features from the previous stage.

3



10−7 10−6 10−5 10−4 10−3 10−2

Laplacian Weight Factor

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Accuracy

10−7 10−6 10−5 10−4 10−3 10−2

Laplacian Weight Factor

0.56

0.58

0.60

0.62

0.64

RO
C_

AU
C

ROC_AUC

Figure 5: Model Performance with Different Laplacian Weight Factor
Table 1: Performance on Trigger Prediction from Clustered Tracks

Pooling Method Accuracy Roc_Auc Training time Epoch Efficiency Purity

Set2Graph+DiffPool 0.7112 0.6948 3h 06m 58s 50 0.3804 0.0380
ParticleNet+DiffPool 0.7423 0.7277 15h 31m 49s 50 0.4196 0.0419
ParticleNet+SAGPool-H 0.7492 0.8174 6h 1m 55s 50 0.4696 0.0469
ParticleNet+SAGPool-G 0.7511 0.8187 5h 12m 5s 50 0.4739 0.0474

Figure 4 shows the architecture of event-level prediction. The algorithm employs a pooling method
that aggregates any number of node features into an event representation with a pre-defined size.
Among multiple choices of pooling method, we adopt SAGPool proposed by Lee et al. [2019] to
categorize each event due to its simplicity and efficiency. In constrast to DiffPool, proposed by Ying
et al. [2018], SAGPool uses graph convolution to calculate the self-attention scores and considers
both node features and graph topology with only moderate time and space costs. It also utilizes the
node selection method proposed by Gao and Ji [2019] to retain a portion of the nodes of the input
graph when the input sizes and structures of graphs vary.

SAGPool calculates the self-attention score Z as: Z = σ(D̃−
1
2 ÃD̃−

1
2XΘatt) where σ is the

activation function, Ã ∈ RN×N is the adjacency matrix with self-loop connections, D̃ ∈ RN×N is
the degree matrix of Ã, X is the input features, and Θatt contains the learnable attention parameters
of the pooling layer.

3 Experiments
We ran our experiments on an NVIDIA TitanXpGPU. All baselines and our model are implemented
with PyTorch by Paszke et al. [2019] and PyTorch Geometric by Fey and Lenssen [2019]. We use
experiments to verify our design choices, including the Laplacian regularization and SAGPool node
aggregation strategy. There are 2 types of SAGPool pooling structures: SAGPool with global pooling
(SAGPool-G) and SAGPool with hierarchical pooling (SAGPool-H).

Data set Our experiment data set consists of simulated sPHENIX p+p collision at 200 GeV c.m.
energy with only MVTX detector readout provided by Huang [2018]. The three-layer structure with
interleaved detector strips generates short tracks. The input vector for each track consists of the
coordinates of the three hits in each detector layer. The length of the edges, the angle between these
two edges, the total track length, and the coordinate of the geometric center of all the hits in the graph
are calculated as complementary features to ease the downstream learning task.

Laplacian Loss Factor Figure 5 shows that the performance improves with properly tuned weight
for the Laplacian loss. The blue dotted horizontal line represents the performance without Laplacian
loss. When the Laplacian weight factor is ≤ 1e-6, both roc_auc score and accuracy outperform
the model trained without the Laplacian loss. We choose the Laplacian weight factor 1e-6 for the
downstream task.

Comparison between SAGPool and DiffPool We perform a grid search to find the best pooling
ratio (0.25, 0.5, 0.75) and the best dropout ratio (0.5, 0.7). We only show the best setting for each
model in Table 1. ParticleNet shows 4% better accuracy compared to Set2Graph proposed by Shlomi
et al. [2021]. SAGPool is efficient, converging three times faster than Diffpool, and reaches a peak
performance 0.9% better than that of Diffpool. SAGPool with global structure using pooling ratio
0.75 and dropout ratio 0.7 preserves 47% triggers while rejecting 90% events. It has the highest
roc_auc score which indicates that it the preferred model to distinguish between triggering and
non-trigger events.

4



4 Limitations
Currently, the node features generated from the first stage are only optimized for link prediction and
not for trigger prediction. One alternative solution would be to train these two models in tandem,
such that the generated node features are optimized for both link prediction and triggering. We would
then need to perform a grid search to find the ratio to weight the loss of the first stage and the loss
of the second stage. This grid search on the pipeline trained end-to-end would search for the best
trade-off between between trigger accuracy and inter-track clustering performance. Another solution
is to perform transductive learning , as proposed by Vapnik [1999]. Moreover, Tingting et al. [2021]
provides a method to construct the tracks dataset from raw hits. Our current model can be applied on
the generated dataset to make a three-stage model and implement the complete end-to-end solution
that inputs raw hits and outputs trigger tags.

5 Conclusion
This paper propose a two-stage model to classify the networks of particle tracks into trigger and
non-trigger events. Our model starts with the clouds of the input tracks and cluster the tracks based
on their vicinity. Afterwards, it performs the binary classification based on the learned features. Our
model can predict triggers with higher accuracy and achieve a significant speedup in training time
with small number of model parameters and simple input of geometric events information. It paves
the way for a high-speed trigger solution with hardware acceleration in the future.

6 Acknowledgement
This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Office of Nuclear Physics, under Award Number
DE-SC0019518.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results... [No]

(a) Did you state the full set of assumptions of all theoretical results?
(b) Did you include complete proofs of all theoretical results?

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyper parameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects... [No]

5



(a) Did you include the full text of instructions given to participants and screenshots, if
applicable?

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable?

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation?

References
A Adare, S Afanasiev, C Aidala, NN Ajitanand, Y Akiba, R Akimoto, J Alexander, K Aoki,

N Apadula, H Asano, et al. An upgrade proposal from the phenix collaboration. arXiv preprint
arXiv:1501.06197, 2015.

Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 101(5), Mar
2020. ISSN 2470-0029. doi: 10.1103/physrevd.101.056019. URL http://dx.doi.org/10.
1103/PhysRevD.101.056019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12,
2019.

Hadar Serviansky, Nimrod Segol, Jonathan Shlomi, Kyle Cranmer, Eilam Gross, Haggai Maron, and
Yaron Lipman. Set2graph: Learning graphs from sets. Advances in Neural Information Processing
Systems, 33, 2020.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International Confer-
ence on Machine Learning, pages 3734–3743. PMLR, 2019.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. arXiv preprint arXiv:1806.08804,
2018.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pages 2083–2092. PMLR, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Jin Huang. sphenix machine learning open data set for tracking and heavy flavor physics. https:
//github.com/sPHENIX-Collaboration/HFMLTrigger, 2018.

Jonathan Shlomi, Sanmay Ganguly, Eilam Gross, Kyle Cranmer, Yaron Lipman, Hadar Servian-
sky, Haggai Maron, and Nimrod Segol. Secondary vertex finding in jets with neural networks.
The European Physical Journal C, 81(6), Jun 2021. ISSN 1434-6052. doi: 10.1140/epjc/
s10052-021-09342-y. URL http://dx.doi.org/10.1140/epjc/s10052-021-09342-y.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,
10(5):988–999, 1999.

Xuan Tingting, Zhu Yimin, Durao Fedrik, and Sun Yu. End-to-end online sphenix trigger detection-
pipeline. Machine Learning and the Physical Sciences Workshop at the 35th Conference on Neural
Information Processing Systems, 2021.

6

http://dx.doi.org/10.1103/PhysRevD.101.056019
http://dx.doi.org/10.1103/PhysRevD.101.056019
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/sPHENIX-Collaboration/HFMLTrigger
https://github.com/sPHENIX-Collaboration/HFMLTrigger
http://dx.doi.org/10.1140/epjc/s10052-021-09342-y

	Introduction
	Model Architecture
	Cluster Tracks based on ParticleNet
	Trigger Prediction via SAGPool

	Experiments
	Limitations
	Conclusion
	Acknowledgement

