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Abstract

We perform a data-driven dimensionality reduction of the 4-point vertex function
characterizing the functional Renormalization Group (fRG) flow for the widely
studied two-dimensional t− t′ Hubbard model on the square lattice. We show that
a deep learning architecture based on a Neural Ordinary Differential Equations
efficiently learns the evolution of low-dimensional latent variables in all relevant
magnetic and d-wave superconducting regimes of the Hubbard model.Ultimately,
our work uses an encoder-decoder architecture to extract compact representations
of the 4-point vertex functions for correlated electrons, a goal of utmost impor-
tance for the success of cutting-edge methods for tackling the many-electron prob-
lem.

1 Introduction

Interacting electron systems exhibit a rich variety of distinct phenomena at different energy and
temperature scales. Upon lowering these scales, new effective degrees of freedom and collective be-
haviors emerge, typically including competing spin, charge and pairing fluctuations. The difficulties
inherent in treating these competing, scale-dependent phenomena on an equal footing represent one
of the major obstacles to the numerical solution of theoretical models.

The renormalization group (RG) provides a powerful approach to study these problems [1–5]. The
RG property of keeping only relevant degrees of freedom, as a scale parameter is reduced, makes
it a valuable tool to study interacting fermions. In its exact or functional (“fRG") form, the RG is
formulated as an exact functional flow equation which provides an effective-action description of
the underlying microscopic model [6–9]. In contrast to standard RG, the common formulation of
fermionic fRG keeps track of the entire frequency/momentum-dependence of the interaction vertices
during the flow [10, 9], introducing the need for alternate data representations [11–17].

The advent of machine learning (ML) techniques and data-driven approaches applied to many body
quantum physics has triggered enormous interest [18, 19]. In this paper, we present a data-driven
approach for dimensionality reduction of the fRG vertex function V(k1, k2, k3), whose descrip-
tion traditionally requires computation and storage of a function of three continuous momentum
variables. We use a neural network architecture known as Neural Ordinary Differential Equations
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Figure 1:Left: The Fermi surface (FS) of the tight-binding model. The blue points indicate the 48
momenta used to patch the FS. The black dashed lines are the Umklapp surface of perfect nesting at
t0 = 0 . Right: The deep learning architecture described in Eqs. 3.

(NODE) [20], augmented with an encoder-decoder architecture. This approach provides us with
additional insight into the low-dimensional structure of the fRG �ow [21].

Thus our ML approach to fRG �ts within the framework of reduced order models [22] without
making unnecessary assumptions. We expect such �exible representation learning techniques to be
useful in other vertex-based numerical methods, besides the fRG, which suffer the bottleneck of
dealing with high-dimensional data sets.

2 The fRG ground states of the Hubbard model

The microscopic Hamiltonian we consider is

H = � t
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with hopping amplitudest andt0between nearest neighbours (nn) and next-nearest neighbours (nnn)
on the 2D square lattice, and onsite Coulomb repulsionU. The 2-particle properties of this model
are investigated through the temperature-�ow one-loop fRG scheme [23, 24], where the RG �ow of
V � (k1; k2; k3) is

dV �

d�
= V � � L � � V � (2)

with the RG scale� given by the temperatureT, and� de�ning integration over the internal degrees
of freedom. Comprehensive reviews of the fRG scheme applied to fermionic problems are found in
Refs. [25–27]. In essence, for spin-rotation invariant systems, the right-hand-side of Eq. 2 splits into
the sum of three contributions, which describe the particle-particle, direct particle-hole and crossed
particle-hole channels [10] necessary to account on similar footing for the SC and density-wave
instabilities. L� is a scale-dependent loop kernel that contains information on the single-particle
properties of the microscopic model.

Neglecting the frequency dependences of the vertex couplings, which have a negative scaling di-
mension (irrelevant couplings) under the RG �ow, but keeping a full momentum description in
terms of a discrete set ofNk wave vectors on the Fermi surface (FS), Eq. 2 is recasted into a set of
N 3

k coupled ordinary differential equations (ODE). The solution to this problem, with initial con-
ditions V� 0 (k1; k2; k3) = U when� 0 = 8 t is the bandwidth, yields the gradual evolution of the
2-particle vertex function V� (k1; k2; k3) as� ! 0 approaches the FS. For a typicalNk = 48 FS
discretization, as depicted in Fig. 1, Eq. 2 gives coupled ODEs with more than105 variables.

When Eq. 2 is numerically solved at varyingt0 for chemical potential �xed at the van Hove �lling
(� = 4 t0) and at weak-couplingU = 3 t, the Hubbard model in Eq. 1 experiences three different
regimes [23]: i) The �rst regime is close to half-�lling, witht0 > � 0:2t and dominant AF scattering
processes between FS regions connected by wave vectors� (�; � ). These can be seen in Fig. 2
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Figure 2: Top: False-color representation of amplitude of vertex function V� (k1; k2; k3) at a late
stage of the renormalization process, for different representative initial conditions. To represent
a function of three momenta we �x the �rst outgoing wave vector k3 and present the vertex as a
function of the two independent incoming vectors. These choices correspond to AFM,d-wave SC
and FM instabilities respectively [24, 23].Bottom: The same as the top but for the predicted data

V̂
�

(k1; k2; k3). We highlight that these data points belong to the test set.

as bright features corresponding to repulsive couplings on the line k2 � k3 � (�; � ). ii) Further
decreasingt0, d-wave SC takes over, with the dominantdx 2 � y2 symmetry of the pairing scattering,
as seen from the sign pro�le of the diagonal features of Fig. 2. iii) After a quantum critical point for
t0 � � 0:33t, scattering processes with small momentum transfer k2 � k3 � (0; 0) dominate, see
bright features in Fig. 2, leading to a change of ground state fromd-wave singlet superconductivity
(SC) to ferromagnetism (FM).

3 The Deep Learning fRG: results and interpretation

By inspecting theO(105) couplings of the 2-particle vertex functions of Fig. 2, just before the
fRG �ow runs to strong coupling and the one-loop approximation breaks down, we recognize that
many of them either have remained nearly constant or have become vanishingly small under the
RG �ow. Only few of them have grown positively or negatively (bright features) under the RG
evolution. However, as mentioned before, contrary to the standard RG procedure for traditional
critical phenomena [3], fermionic fRG does not discard any coupling in the vertex V� (k1; k2; k3)
during the �ow. Our approach is to �nd a simpler representation in a data-driven manner, using the
power of neural nets to �nd useful features.

In recent years, there have been many developments in utilizing neural networks for predicting
sequence data [28]. Since we are interested in �nding latent variables whose dynamics itself is
governed by an ODE, the natural candidate is a �exible dimensionality reduction scheme based on
the Parameterized NODE architecture [20, 29]. The method, sketched in Fig. 1, focuses on three
deep neural networks – the encoderE, the NODEK and the decoderD. The complete action of our
model is de�ned by:

z� 0 = E� (t0; U; � ) ;
dz�

d�
= K � (z� ) ; V̂

�
= D
 (z� ) (3)

where� , � , 
 are parameter sets corresponding to each neural network. The ground truth data are
generated by solving the fRG problem in Eq. 2 for 35 values oft0 in the range0 � � t0=t < 0:5 (and
U = 3 t), and storing for eacht0 the whole vertex dynamics, for a total of� 7 thousands collected
vertices, each withO(N 3

k � 105) elements.

The encoder maps the Hubbard model parameters and fRG initial condition to a low-dimensional
latent representationz� 0 of drastically smaller dimension thanN 3

k . All the results here are obtained
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