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Abstract

We perform a data-driven dimensionality reduction of the 4-point vertex function
characterizing the functional Renormalization Group (fRG) flow for the widely
studied two-dimensional ¢ — ¢’ Hubbard model on the square lattice. We show that
a deep learning architecture based on a Neural Ordinary Differential Equations
efficiently learns the evolution of low-dimensional latent variables in all relevant
magnetic and d-wave superconducting regimes of the Hubbard model.Ultimately,
our work uses an encoder-decoder architecture to extract compact representations
of the 4-point vertex functions for correlated electrons, a goal of utmost impor-
tance for the success of cutting-edge methods for tackling the many-electron prob-
lem.

1 Introduction

Interacting electron systems exhibit a rich variety of distinct phenomena at different energy and
temperature scales. Upon lowering these scales, new effective degrees of freedom and collective be-
haviors emerge, typically including competing spin, charge and pairing fluctuations. The difficulties
inherent in treating these competing, scale-dependent phenomena on an equal footing represent one
of the major obstacles to the numerical solution of theoretical models.

The renormalization group (RG) provides a powerful approach to study these problems [1-5]. The
RG property of keeping only relevant degrees of freedom, as a scale parameter is reduced, makes
it a valuable tool to study interacting fermions. In its exact or functional (“fRG") form, the RG is
formulated as an exact functional flow equation which provides an effective-action description of
the underlying microscopic model [6-9]. In contrast to standard RG, the common formulation of
fermionic fRG keeps track of the entire frequency/momentum-dependence of the interaction vertices
during the flow [10, 9], introducing the need for alternate data representations [11-17].

The advent of machine learning (ML) techniques and data-driven approaches applied to many body
quantum physics has triggered enormous interest [18, 19]. In this paper, we present a data-driven
approach for dimensionality reduction of the fRG vertex function V(kj, ks, ks3), whose descrip-
tion traditionally requires computation and storage of a function of three continuous momentum
variables. We use a neural network architecture known as Neural Ordinary Differential Equations
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Figure 1: Left: The Fermi surface (FS) of the tight-binding model. The blue points indicate the 48
momenta used to patch the FS. The black dashed lines are the Umklapp surface of perfect nesting at
t’ = 0. Right: The deep learning architecture described in Egs. 3.

(NODE) [20], augmented with an encoder-decoder architecture. This approach provides us with
additional insight into the low-dimensional structure of the fRG flow [21].

Thus our ML approach to fRG fits within the framework of reduced order models [22] without
making unnecessary assumptions. We expect such flexible representation learning techniques to be
useful in other vertex-based numerical methods, besides the fRG, which suffer the bottleneck of
dealing with high-dimensional data sets.

2 The fRG ground states of the Hubbard model
The microscopic Hamiltonian we consider is

H = —tZCI)SCj,s - CI)SC]',S + Uanm,L (1)
[
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with hopping amplitudes ¢ and ¢’ between nearest neighbours (nn) and next-nearest neighbours (nnn)
on the 2D square lattice, and onsite Coulomb repulsion U. The 2-particle properties of this model
are investigated through the temperature-flow one-loop fRG scheme [23, 24], where the RG flow of
VA (k1, ko, k3) is
avh A TA A
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with the RG scale A given by the temperature 7', and o defining integration over the internal degrees
of freedom. Comprehensive reviews of the fRG scheme applied to fermionic problems are found in
Refs. [25-27]. In essence, for spin-rotation invariant systems, the right-hand-side of Eq. 2 splits into
the sum of three contributions, which describe the particle-particle, direct particle-hole and crossed
particle-hole channels [10] necessary to account on similar footing for the SC and density-wave
instabilities. L” is a scale-dependent loop kernel that contains information on the single-particle
properties of the microscopic model.

Neglecting the frequency dependences of the vertex couplings, which have a negative scaling di-
mension (irrelevant couplings) under the RG flow, but keeping a full momentum description in
terms of a discrete set of NV wave vectors on the Fermi surface (FS), Eq. 2 is recasted into a set of
N3 coupled ordinary differential equations (ODE). The solution to this problem, with initial con-
ditions V¢ (ky, ko, k3) = U when Ag = 8t is the bandwidth, yields the gradual evolution of the
2-particle vertex function V* (k1,ko,k3) as A — 0 approaches the FS. For a typical N, = 48 FS
discretization, as depicted in Fig. 1, Eq. 2 gives coupled ODEs with more than 10° variables.

When Eq. 2 is numerically solved at varying ¢’ for chemical potential fixed at the van Hove filling
(1 = 4t’) and at weak-coupling U = 3t, the Hubbard model in Eq. | experiences three different
regimes [23]: i) The first regime is close to half-filling, with ¢ > —0.2¢ and dominant AF scattering
processes between FS regions connected by wave vectors ~ (7, 7). These can be seen in Fig. 2
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Figure 2: Top: False-color representation of amplitude of vertex function VA(kl7 ko, k3) at a late
stage of the renormalization process, for different representative initial conditions. To represent
a function of three momenta we fix the first outgoing wave vector ks and present the vertex as a
function of the two independent incoming vectors. These choices correspond to AFM, d-wave SC
and FM instabilities respectively [24, 23]. Bottom: The same as the top but for the predicted data
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as bright features corresponding to repulsive couplings on the line ko — k3 ~ (7, 7). ii) Further
decreasing t', d-wave SC takes over, with the dominant d,>_,2> symmetry of the pairing scattering,
as seen from the sign profile of the diagonal features of Fig. 2. iii) After a quantum critical point for
t' ~ —0.33t, scattering processes with small momentum transfer ko — ks ~ (0,0) dominate, see
bright features in Fig. 2, leading to a change of ground state from d-wave singlet superconductivity
(SCO) to ferromagnetism (FM).

3 The Deep Learning fRG: results and interpretation

By inspecting the O(10°) couplings of the 2-particle vertex functions of Fig. 2, just before the
fRG flow runs to strong coupling and the one-loop approximation breaks down, we recognize that
many of them either have remained nearly constant or have become vanishingly small under the
RG flow. Only few of them have grown positively or negatively (bright features) under the RG
evolution. However, as mentioned before, contrary to the standard RG procedure for traditional
critical phenomena [3], fermionic fRG does not discard any coupling in the vertex V/ (kq, ko, k3)
during the flow. Our approach is to find a simpler representation in a data-driven manner, using the
power of neural nets to find useful features.

In recent years, there have been many developments in utilizing neural networks for predicting
sequence data [28]. Since we are interested in finding latent variables whose dynamics itself is
governed by an ODE, the natural candidate is a flexible dimensionality reduction scheme based on
the Parameterized NODE architecture [20, 29]. The method, sketched in Fig. 1, focuses on three
deep neural networks — the encoder £, the NODE K and the decoder D. The complete action of our
model is defined by:

dz?
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where «, 3, v are parameter sets corresponding to each neural network. The ground truth data are
generated by solving the fRG problem in Eq. 2 for 35 values of ¢’ in the range 0 < —¢'/t < 0.5 (and

U = 3t), and storing for each ¢’ the whole vertex dynamics, for a total of ~ 7 thousands collected
vertices, each with O(N} ~ 10°) elements.

The encoder maps the Hubbard model parameters and fRG initial condition to a low-dimensional
latent representation z*0 of drastically smaller dimension than N, 3. All the results here are obtained
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Figure 3: Left: Correlation matrix of the latent vectors z* at different ¢’ values for A — 0. The
correlation matrix is defined as the scalar product kernel [z(t}) - Z(t})] between normalized latent
variables Z, where ¢} and ¢}, are any of the 0 < —t'/¢t < 0.5. Red (blue) features correspond to
a high (low) degree of statistical correlation. Middle: Three-groups K-Means clustering [30] of
neuron activation in fCg as a function of ¢’ for A — 0. Right: The leading channel eigenvalues
wg(A) as functions of ¢’ at limit of validity of one-loop approximation.

with a latent space dimension of 32, but are robust against the use of either smaller or larger values,
as we show in Ref. [21]. The NODE then defines a differential equation propagation rule for latent
variables in A. Finally, at each step of the flow, a decoder network is employed to map the latent

. . . oA
representation z” to a reconstructed 4-point vertex function V' (k1, ko, k3). We use mean squared

<A
error (MSE) between V' and V2, in conjunction with a gradient-based optimizer [31]. All three
networks, &£, Kg, and, D.,, are optimized simultaneously.

The learned dynamics successfully captures the final instability for the entire range of next-nearest
neighbour couplings t'. Satisfactory prediction of the qualitative features of the vertex data is
achieved in the limit A — 0, as presented in Fig. 2. More interestingly, Fig. 3 shows that, during the
fRG dynamics in the latent space, three highly statistically correlated latent space representations
z emerge as a learned feature of the NODE neural network. At A = Ay, a first classification task
is performed by the encoder &£,, which produces highly-correlated latent variables according to the
value of ¢'. The NODE K g takes it over to finite RG-time In A /A, and during the final stages of the
fRG evolution in A, three markedly correlated areas appear, as shown in Fig. 3 (left).

The boundaries of these three regions roughly coincide with the values of ¢’ at which the fRG pre-
dicts a change in the leading two-particle instability [23]. It is also interesting to notice that while
the anti-ferromagnetic (AFM) and d—wave SC areas show similar normalized Z and are thus well-
aligned in the latent space (the scalar product kernel [Z(¢]) - Z(t5)] ~ 1), reflecting their common
origin in the dominant spin-fluctuations, the FM region stands on its own, separated from the other
two phases by either a quantum critical point [23] or a first order transition [32]. The neural network
distinguishes between these three many-body regimes by learning specific low-dimensional hidden
representations. This is accomplished by activating three different groups of neurons in /g as a func-
tion of ¢, as shown in Fig. 3. Each instability ground state corresponds indeed to a specific pattern
of active neurons. This is manifestly evident when the neuron activation patterns of Fig. 3 (middle)
are contrasted to Fig. 3 (right), where we show the dependence on t’ of the most negative eigenval-
ues w§ (A) of the fRG channel-couplings W< (k1, ko) = >, wih(A) £ (k1)* £¢" (ko) [26], with
channels ch = AFM, SC, FM. These leading eigenvalues are the ones associated with the highest
ordering temperature 7 for their specific channel [26].

4 Outlook

Our work presents an application of artificial intelligence to fRG, which successfully unveils a di-
mensionality reduced dynamics for the Hubbard model on a square lattice at specific sets of electron
filling. Nonetheless, the relevance of the procedure outlined in our paper goes beyond the testbed
cases considered. In particular, the identification of how to extract and manipulate relevant informa-



tion encoded in the 4-point (or two-particle) vertex functions of many-electron problems, separating
it from the non-relevant ones, represents a goal of utmost importance for the success of several
cutting-edge methods for quantum materials [25, 33-37]. Numerical manipulation and storage of
these vertex functions requires large-scale memory and computational resources, forming bottleneck
for applications and necessitating learning of compressed representations of such vertex functions.

For this purpose, it will be important to explore whether transfer learning [38] could mitigate the bur-
den of training deep nets for similar Hamiltonians. More generally, our approach, with the essential
computations depending only on a “small” number of internal variables of the network, is expected
to scale better than conventional implementation of most many-body algorithms. Thus, it might help
us access currently hard-to-reach parts of phase diagrams of quantum many-body systems.
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A Broader impact statement

Since our work tackles an abstract physics problem, it is difficult to estimate any societal impacts
that are not already associated with underlying models (Neural ODEs and Convolutional Neural
Networks) or Al in general (e. g. environmental impacts).

Regardless, as noted in the main text, we conjecture that large compression of high-dimensional ver-
tex functions can reduce overall compute and storage needed for related calculations. Such reduction
in required computational resources can contribute to energy savings for large-scale calculations and,
consequently, to reduction of overall emissions associated with high-performance computation.

B Computational resources

The code and the corresponding license needed to reproduce results in this work is available by click-
ing through the following URL: github.com/BITMAPdds/NeuralFRG. Numerical simulations were
carried out using PyTorch [39], (BSD), NumPy [40] (BSD), SciPy [41] (BSD). Plots were generated
using Matplotlib [42] (PSF). Data storage and loading was handled in the HDF5 format [43, 44]
(BSD).

The Fortran N-patch fRG code used to produce ground-truth data was obtained through private
communication with Ronny Thomale.

The amount of compute used is difficult to report accurately because the data wasn’t collected during
the process itself. In total, we estimate that the results presented in this paper used approximately 72
GPU-hours for neural-network training and 12 CPU-hours for fRG data generation. These resources
were used at a local cluster belonging to the authors’ institutions.
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