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Abstract

We develop the use of mutual information (MI), a well-established metric in in-
formation theory, to interpret the inner workings of deep learning models. To
accurately estimate MI from a finite number of samples, we present GMM-MI,
an algorithm based on Gaussian mixture models that can be applied to both dis-
crete and continuous settings. GMM-MI is computationally efficient, robust to
hyperparameter choices and provides the uncertainty on the MI estimate due to the
finite sample size. We demonstrate the use of our MI estimator in the context of
representation learning, working with synthetic data and physical datasets describ-
ing highly non-linear processes. We use GMM-MI to quantify both the level of
disentanglement between the latent variables, and their association with relevant
physical quantities, thus unlocking the interpretability of the latent representation.
We make GMM-MI publicly available in this GitHub repository. �

1 Introduction

Despite recent progress, deep neural networks remain opaque models, and their power as universal
approximators [7, 15, 16] comes at the expense of interpretability [26]. Many techniques have been
developed to gain insight into such black-box models [4, 24, 30, 32–34, 36, 37]; however, a general
framework to interpret deep neural networks is still an avenue of active investigation [21, 22]. In
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this work, we focus on representation learning, where a high-dimensional dataset is compressed
to a smaller set of latent variables, and link the latent variables to relevant physical quantities by
estimating their mutual information (MI). MI is a well-established information-theoretic measure of
the relationship between two random variables which allows us to interpret what the model has learned
about the domain-specific parameters: by interrogating the model through MI, we aim to discover
what information is used by the model in making predictions, thus achieving the interpretation of its
inner workings. We also use MI to quantify the level of disentanglement of the latent variables.

The use of MI estimates for interpreting deep representation learning has recently been investigated
[5, 6, 23, 31]. However, estimating the mutual information I(X,Y ) between two random variables
X and Y , given samples from their joint distribution p(X,Y ), remains a long-standing challenge,
since it requires p(X,Y ) to be known or estimated accurately [27, 35]. Moreover, exploiting MI to
interpret deep representation learning requires the uncertainties on the MI estimate to be quantified,
ensuring that any trends in MI are statistically significant. To address these requirements, we present
GMM-MI (pronounced “Jimmie"), an algorithm to estimate the full distribution of I(X,Y ) based
on fitting the samples with Gaussian mixture models (GMMs). GMMs represent a flexible, efficient
and well-established model to perform density estimation of the samples. We have verified that the
error estimates returned by GMM-MI are statistically correct on test datasets including bivariate
distributions of various shapes and synthetic GMM datasets. After validating GMM-MI on these toy
data, we train representation learning models on high-dimensional datasets, including simulations
of dark matter halos, real astrophysical spectra and synthetic shape images with known labels, and
demonstrate the use of GMM-MI to achieve the interpretability of such models.

2 Method

2.1 Estimation procedure (GMM-MI)

When X and Y are continuous variables with values over X × Y , I(X,Y ) is defined as:

I(X,Y ) ≡
∫
X×Y

p(X,Y )(x, y) ln
p(X,Y )(x, y)

pX(x)pY (y)
dx dy , (1)

where pX and pY are the marginal distributions of X and Y , respectively, and ln refers to the natural
logarithm, so that MI is measured in natural units (nat). I(X,Y ) represents the amount of information
one gains about Y by observing X (or vice versa); a comprehensive summary of MI and its properties
can be found in Vergara and Estévez [35]. Our algorithm uses a GMM with c components to obtain a
fit of the joint distribution p(X,Y ):

p(X,Y )(x, y|θ) =
c∑

i=1

wiN (x, y|µi,Σi) , (2)

where θ is the set of weights w1:c, means µ1:c and covariance matrices Σ1:c. With this choice, the
marginals p(x) and p(y) are also GMMs, with parameters determined by θ. The procedure for
estimating MI and its associated uncertainty is as follows.

1. For a given number of GMM components c, we initialize ninit different GMM models.
We obtain each set of initial GMM parameters by randomly assigning the responsibilities,
i.e. the probabilities that each point belongs to a component i, sampling from a uniform
distribution. The starting µi and Σi are calculated as the mean and covariance matrix of all
points, weighted by the responsibilities; each wi is initialized as the average responsibility
across all points. Other initialization procedures are also implemented in GMM-MI and
could alternatively be used.

2. We fit the data using k-fold cross-validation, i.e. we train a GMM on k − 1 subsets of the
data (or “folds"), and evaluate the trained model on the remaining validation fold. Each fit
is performed with the expectation-maximization algorithm [10], and terminates when the
change in log-likelihood on the training data is smaller than a chosen threshold. We also add
a small regularization constant ω to the diagonal of each covariance matrix to avoid singular
covariance matrices [25].

3. We select the model with the highest mean validation log-likelihood across folds ℓ̂c, since it
has the best generalization performance. Among the k models corresponding to ℓ̂c, we also
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Figure 1: Left panel: Mutual information (MI) between each ground truth factor and each latent
variable of the β-VAE model trained on the 3D Shapes dataset, obtained using GMM-MI. All zeros
indicate values of MI below 0.01 nat. Right panel: MI between each latent variable and dark matter
halo density ρtruth in each radial bin for the IVEinfall model [23]. The points with darker error bars
correspond to the mean and standard deviation obtained with GMM-MI. The striped areas indicate
the kernel density estimate (KDE) values with bandwidths of 0.3 (lower limit) and 0.1 (upper limit).

store the final GMM parameters with the highest validation log-likelihood on a single fold:
these will be used to initialize each bootstrap fit in step 5, thus reducing the risk of stopping
at local optima and significantly accelerating convergence.

4. We repeat steps 1–3 iteratively increasing the number of GMM components from c = 1. We
stop when ℓ̂c+1 − ℓ̂c is smaller than a user-specified positive threshold, and select this value
of c as the optimal number of GMM components to fit.

5. We bootstrap the data nb times, and fit a GMM to each bootstrapped realization. Each fit is
initialized with the GMM parameters selected in step 3, and with c found in step 4.

6. For each fitted model, we calculate MI by solving the integral in Eq. (1) using Monte Carlo
(MC) integration over M samples. We finally return the sample mean and standard deviation
of the distribution of MI values.

In many instances, the factors of variation that are used to generate the data are discrete variables; in
these cases, we will need to estimate MI between a continuous variable X and a categorical variable
F which can take v different values f1:v . Assuming the v values have equal probability (as for the 3D
shapes dataset in Sect. 3.1), the mutual information I(X,F ) can be expressed as (the full derivation
is in Appendix A):

I(X,F ) =
1

v

v∑
i=1

∫
X
dx p(X|F )(x|fi)

ln p(X|F )(x|fi)− ln
1

v

v∑
j=1

p(X|F )(x|fj)

 , (3)

where we use a GMM to fit each conditional probability p(X|F )(x|fi). All implementation details
are reported in the PYTHON code which can be found in the GMM-MI GitHub repository. �

3 Results

We first validate our procedure on toy data for which the ground truth MI is known; the results
are shown in Appendix B. We then train representation learning models on synthetic and real data,
using our MI estimator to quantify the level of disentanglement of latent variables, and link them
to relevant physical parameters. In the following experiments, we consider k = 3 folds, ninit = 5
initializations, a log-likelihood threshold on each fit of 10−5, nb = 100 bootstrap realizations,
M = 105 MC samples, and a regularization scale of ω = 10−15; we found GMM-MI to be robust to
the hyperparameter choice. We run all the experiments on a single CPU node with 40 2.40GHz Intel
Xeon Gold 6148 cores using no more than 300 MB of RAM, typically obtaining the full distribution
of MI in O(10) s; since GMMs have linear time complexity in the number of fitted samples and in
the number of components [3], GMM-MI results in an efficient algorithm. As representation learning
models, we consider β-variational autoencoders (β-VAEs, [14, 18]), where one neural network is
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(a) Our results, using GMM-MI.
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(b) Results from Sedaghat et al. [31], using histograms.

Figure 2: Left panel: Mutual information (MI) between the six most-informative latent variables and
six astrophysical parameters described in Sect. 3.3, calculated using our algorithm GMM-MI. Right
panel: Same as the left panel, using the MI estimator of Sedaghat et al. [31] based on histograms.

trained to encode high-dimensional data into a distribution over disentangled latent variables z (with
disentanglement level controlled by β), and a second network decodes samples from the latent
distribution back into data points. In Sect. 3.2, we consider the interpretable variational encoder (IVE)
[23], where latent samples are combined with the halo radius r through the decoder to predict dark
matter halo density profiles at each given r.

3.1 3D Shapes

We consider the 3D Shapes dataset [2, 17], which consists of images of various shapes that were
generated by varying six factors including shape, scale and orientation. We train a β-VAE using a
6-dimensional latent space and setting the value of β using cross-validation. After training, we encode
the test set (10% of the data, i.e. 48 000 points) and sample one point from each latent distribution.
To interpret what each latent variable zi has learned about each generative factor of variation fj , we
measure the mutual information I(zi, fj) using Eq. (3). In the left panel of Fig. 1 we report the MI
values for all latents and factors using GMM-MI: except for scale and shape, each latent variable
carries information about a single factor of variation. The difficulty in disentangling scale and shape
was also reported in Kim and Mnih [17]. To assess the level of dependence between latent variables,
we calculate I(zi, zj): these values are below 10−4 nat for all pairs, except for the one carrying
information about both scale and shape, i.e. I(z2, z4) = 0.04± 0.01 nat.

3.2 Dark matter halo density profiles

Following Lucie-Smith et al. [23, LS22 hereafter], we consider 4332 dark matter halos coming from
a single N -body simulation, and encode them using their IVEinfall model with 3 latent variables.
The latent representation is used to predict the dark matter halo density profile in 13 different radial
bins. We calculate the MI between the ground-truth halo density in each radial bin and each latent
variable. We show the trend of MI for all radial bins and latent variables in the right panel of Fig. 1.
We compare the estimates from GMM-MI with those obtained using kernel density estimation (KDE)
with different bandwidths, as done in LS22. A major difference between the two approaches is that
our bands indicate the error coming from the limited sample size, while their bands represent the
sensitivity of the KDE to different bandwidths. The results are in good agreement: in particular,
GMM-MI returns estimates closer to the KDE approach with smaller bandwidth when MI is high; in
this case, the higher KDE bandwidth value underfits the data. On the other hand, for lower values of
MI, GMM-MI yields estimates consistent with the KDE ones at higher bandwidth, since the lower
bandwidth overfits the data. We also checked that the latent variables of the IVEinfall model are
independent: as in LS22, the MI between each pair of latents is O(10−2) nat.
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3.3 Stellar spectra

We consider the model presented in Sedaghat et al. [31, S21 hereafter], where a β-VAE is trained on
about 7000 real unique stellar spectra with a 128-dimensional latent space. Our analysis is carried
out on the six most informative latents, selected according to the median absolute deviation (MAD).
We calculate MI between the six latents and six known continuous physical factors: the star radial
velocity, its effective temperature Teff , its mass, its metallicity [M/H], the atmospheric air mass and
the signal-to-noise ratio (SNR). The MI estimates obtained with GMM-MI are shown in the left panel
of Fig. 2: the 124th latent variable shows high dependence on the radial velocity, while the 85th latent
appears entangled with both Teff and mass; the other physical parameters do not show a dependence
on a particular latent (further discussion can be found in S21). The right panel of Fig. 2 shows the
results with the procedure outlined in S21, which uses histograms with a certain number of bins (40
in this case) as density estimators. The trend agrees with our results, even though the particularly
high number of bins chosen might overfit the data and overestimate MI (compare e.g. the [M/H] MI
estimates), analogously to the KDE results in Fig. 1. On the other hand, our algorithm provides a
robust way to select the hyperparameters, thus avoiding underfitting or overfitting the samples.

4 Conclusions

We presented GMM-MI (pronounced “Jimmie"), an efficient and robust algorithm based on Gaussian
mixture models to estimate the distribution of mutual information (MI) between two random variables
given samples from their joint distribution. We demonstrated the application of GMM-MI to interpret
the latent space of three different deep representation learning models trained on synthetic and
real datasets. We calculated both the MI between latent variables and physical factors, and the MI
between the latent variables themselves, to quantify their disentanglement. We plan to extend our
work by improving the density estimation with more expressive tools such as normalizing flows (NFs,
[11, 29]), which can be seamlessly integrated into neural network-based settings and can benefit
from graphics processing unit (GPU) acceleration. Moreover, combining NFs with a differentiable
numerical integrator would make our estimator amenable to backpropagation, thus allowing its
use in the context of MI optimization. GMM-MI is publicly available in this GitHub repository
(https://github.com/dpiras/GMM-MI, also accessible by clicking the icon �).

Broader impact statement

The application of deep learning (DL) models to a variety of scientific fields and beyond is quickly
gaining popularity, and their significant impact on these areas is unquestionable. However, under-
standing what these models are learning and why they return their predictions remain open questions,
with many routes being currently investigated. Our work proposes the use of the established metric of
mutual information to achieve the interpretability and explainability of such models, thus increasing
the trust that can be placed in such models. Additionally, our work aims to obtain new physical
insights from machine learning, showing that it is possible to gain scientific knowledge from deep
learning models, which can then impact the design of new theories and hypotheses.
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A Derivation of the mutual information between a continuous and a
categorical variable

In order to derive Eq. (3), we first rewrite Eq. (1) as:

I(X,Y ) =

∫
X×Y

p(X|Y )(x|y)pY (y) ln
p(X|Y )(x|y)
pX(x)

dx dy . (4)

Then, we assume a generalized probability density function for the categorical variable F over F :

pF (f) =

v∑
i=1

pF (f = fi)δ(f − fi) =
1

v

v∑
i=1

δ(f − fi) , (5)

where δ is the Dirac delta function, and in the last step we assumed that F can take the values f1:v with equal
probability. Combining the last two equations, we obtain:

I(X,F ) =

∫
X×F

dx df p(X|F )(x|f)pF (f) ln
p(X|F )(x|f)
pX(x)

=
1

v

v∑
i=1

∫
X×F

dx df p(X|F )(x|f)δ(f − fi)
[
ln p(X|F )(x|f)− ln pX(x)

]
=

1

v

v∑
i=1

∫
X
dx p(X|F )(x|fi)

[
ln p(X|F )(x|fi)− ln pX(x)

]
=

1

v

v∑
i=1

∫
X
dx p(X|F )(x|fi)

[
ln p(X|F )(x|fi)− ln

1

v

v∑
j=1

p(X|F )(x|fj)

]
, (6)

as reported in Eq. (3).

B Validation of GMM-MI

In order to validate our algorithm, we compare it with two established estimators of MI. The KSG estimator,
first proposed in Kraskov et al. [20], rewrites MI as a function of the Shannon entropy, and uses the Kozachenko-
Leonenko estimator [19] to evaluate it. In our experiments, we consider the implementation of the KSG estimator
available from SKLEARN at this https link. We also compare our algorithm against the MINE estimator proposed
in Belghazi et al. [1], based on neural networks. MINE interprets MI as the KL divergence between the joint
distribution and the product of the marginals, and then considers its Donsker-Varadhan representation [12]. In
our experiments, we consider the implementation available at this https link. Further tests validating GMM-MI
on synthetic GMM datasets are not presented here for conciseness.

We consider three bivariate distributions: a Gaussian distribution with unit variance of each marginal and varying
level of correlation ρ ∈ [−1, 1], the gamma-exponential distribution [8, 9, 13, 20] and the ordered Weinman
exponential distribution [8, 9, 13, 20]. The true values of MI for these distributions can be obtained via direct
integration of Eq. (1). In the bivariate Gaussian case:

I(X,Y )true = −1

2
ln

(
1− ρ2

)
, (7)

where ρ is the correlation coefficient. For the gamma-exponential distribution, which has density:

p(X,Y )(x, y|α) =

{
1

Γ(α)
xαe−x−xy x > 0, y > 0

0 otherwise
, (8)

where α > 0 is a free parameter and Γ is the gamma function, MI is calculated as:

I(X,Y ) = ψ(α+ 1)− lnα , (9)

where ψ is the digamma function, defined as:

ψ(x) =
Γ′(x)

Γ(x)
. (10)

For the ordered Weinman exponential distribution, with density:

p(X,Y )(x, y|α) =

{
2
α
e−2x− y−x

α y > x > 0

0 otherwise
, (11)
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(a) Bivariate Gaussian distribution.
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(b) Gamma-exponential distribution.
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(c) Ordered Weinman exponential distribution.

Figure 3: Value of mutual information (MI) for: (a) a bivariate Gaussian distribution with varying
correlation coefficient ρ; (b) a gamma-exponential distribution with varying α, as in Eq. (8); (c) an
ordered Weinman exponential distribution with varying α, as in Eq. (11). The dashed black line
indicates the ground truth MI. We compare the KSG estimator ([20], solid red line), the MINE
estimator ([1], dotted-dash green line), and our estimator GMM-MI, indicated with the gray shaded
area (mean ± two standard deviations). The numbers in parentheses indicate the time to obtain a
single estimate with KSG and MINE, and the full distribution of MI in the case of GMM-MI, for
each ρ.

where α > 0 is a free parameter, MI reads:

I(X,Y ) =


ln

(
1−2α
2α

)
+ ψ

(
1

1−2α

)
− ψ(1) α < 1

2

−ψ(1) α = 1
2

ln
(
2α−1
2α

)
+ ψ

(
2α

2α−1

)
− ψ(1) α > 1

2

. (12)

Since I(X,Y ) is invariant under invertible transformations of each random variable, we consider ln(X) and
ln (Y ) when estimating MI in the case of the last two distributions [20]. To demonstrate the power of our
estimator, we restrict ourselves to the case with only N = 200 samples. To estimate MI, we consider the KSG
estimator with 1 neighbor (to minimize the bias), the MINE estimator trained for 50 epochs with a learning rate
of 10−3 and a batch size of 32, and our estimator GMM-MI with k = 2 folds, ninit = 3 different initializations,
a log-likelihood threshold on each individual fit of 10−5, a threshold on the mean validation log-likelihood to
select the number of GMM components of 10−5, nb = 100 bootstrap realizations, M = 104 MC samples, and
a regularization scale of ω = 10−12.

The results are reported in Fig. 3. The KSG estimator is the fastest, and yields MI values closely matching the
ground truth, but returns biased estimates around e.g. |ρ| = 0.4 in the bivariate Gaussian case, and α = 1 in the
ordered Weinman case. The MINE estimator is more computationally expensive and shows a relatively high
variance, which is expected since MINE has been shown to be prone to variance overestimation due to the use
of batches [28]. GMM-MI, on the other hand, returns a distribution of MI in good agreement with the ground
truth in O(1) s, and includes an uncertainty estimate due to the finite sample size. We also found the results of
GMM-MI to be robust to the choice of hyperparameters: changing the values of the likelihood threshold, MC
samples, bootstrap realizations or regularization scale by one order of magnitude, or doubling the number of
folds and initializations, did not significantly change the results obtained with GMM-MI.
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