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Abstract

Machine Learning (ML) models have proved to be excellent emulators of Density
Functional Theory (DFT) calculations for predicting features of small molecular
systems. The activation energy is a defining feature of a chemical reaction, but,
despite the success of ML in computational chemistry, an accurate, fast, and general
ML-calculator for Minimal Energy Paths (MEPs) has not yet been proposed. Here,
we summarize contributions from two of our recent papers, where we apply Graph
Neural Network (GNN) based models, trained on various datasets, as potentials
for the Nudged Elastic Band (NEB) algorithm to speed up MEP-search. We show
that relevant data from reactive regions of the Potential Energy Surface (PES)
in training data is paramount to success. Hitherto popular benchmark datasets
primarily contain configurations in, or close to, equilibrium, and are not adequate
for the task. We propose a new dataset, Transition1x, that contains force and energy
calculations for 10 million molecular configurations from on and around MEPs
of 10.000 organic reactions of various types. By training GNNs on Transition1x
and applying the models as PES-evaluators for NEB, we achieve a Mean Average
Error (MAE) of 0.23 eV on predicted activation energies of unseen reactions,
compared to DFT, while running the algorithm 1200 times faster. Transition1x is a
challenging dataset containing a new type of data that may serve as a benchmark
for future methods for transition-state search.

Introduction

The activation energy of a chemical reaction is the difference between the reactant and transition
state energies. It describes the energetic barrier of the reaction, and it dominates the reaction-
rate exponentially through the Arrhenius Equation. To build a virtual laboratory, where reaction
mechanisms for synthesis of drugs and materials can be studied, it is crucially important to be able
to quickly and accurately predict activation energies and Minimal Energy Paths (MEPs) between
equilibrium configurations. Nudged Elastic Band (NEB)1 is an effective algorithm, designed to find
MEPs, and activation energies in chemical space. It does so by iteratively nudging an initial guess for
the reaction path in the direction of the force perpendicular to the path until convergence. The NEB
algorithm requires a subordinate algorithm for calculating gradients and energies on the surrounding
Potential Energy Surface (PES), and Density Functional Theory (DFT) is a popular choice for this.
However, a single DFT calculation can take from a minute and up to several hours, depending on the
size of the molecule and level of theory. Even for small molecular systems of 6-7 heavy atoms, NEB
has to evaluate thousands of configurations to converge, making DFT inappropriate for large scale
exploration of reaction-networks.

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



Machine Learning (ML) models, and Graph Neural Networks (GNNs)2,3 in particular, have proved to
be capable surrogate DFT potentials that can accurately evaluate molecular properties fast4–13. In this
paper we train Polarizable Atom interaction Neural Network (PaiNN)14 models, a GNN architecture,
on various datasets and apply them as surrogate potentials for DFT to alleviate the NEB-bottleneck.

Initially, the models were trained on existing datasets in the literature. However, available datasets of
significant volume that are interesting for training Neural Network (NN) models, either contain molec-
ular configurations exclusively in equilibrium, or are generated through Molecular Dynamics (MD).
Transitions between equilibriums are rare events, and datasets generated through MD-simulations do
not contain sufficient samples of data around reaction paths to enable training models with accurate
representations of these regions15,16. We created a new dataset, Transition1x, to address this problem.
Transition1x leverages NEB to sample relevant configurations on and around reaction pathways
for thousands of organic reactions. All intermediate configurations encountered while running the
algorithm were calculated using the same level of DFT as the popular ANI1x17,18 dataset, such that
models trained on the two datasets can be compared in a meaningful way.

Method
Nudged Elastic Band
NEB1 is a method for finding transition-states and MEPs given products and reactants of chemical
reactions. It does so by iteratively nudging an initial guess for the MEP directed by the force
perpendicular to the path. The path is represented by an array of molecular configurations called
images connected by an artificial spring force which ensures that the images stay evenly separated
and do not fall into the minimas at the reaction endpoints. Eventually, as the perpendicular force
on the path converges to zero, the MEP will relax at the bottom of the local low-energy valley.
At this point, NEB returns the maximal-energy configuration along the path as the transition-state.
However, the true transition-state of the reaction may lie between two images representing the path.
Climbing Image Nudged Elastic Band (CINEB)19 addresses this problem by, between iterations,
choosing a transition-state candidate and further maximize its energy by following the gradient on
the PES, parallel to the current path. The CINEB algorithm terminates once both the maximal force
perpendicular to the path, and climbing force on the transition-state candidate has converged. At this
point, the maximal energy-configuration representing the path corresponds to the transition state.

Datasets
Transition1x was generated by running NEB, applying DFT as potential, on all reactions in the
dataset released by Grambow et al. (2020)20. The original data contains products, reactants, and
transition states for 11.000 organic reactions of various types. To ensure compatibility with ANI1x
and QM9x, all intermediate calculations were made using the 6-31G(d)21 basis set and ωB97x
functional22 . NEB typically converges within 200 iterations given the elements and sizes of
molecules in the dataset. Calculations become gradually more similar towards convergence of
NEB, as the path is nudged less between iterations. In order to reduce redundancy in data, paths
are excluded from the dataset unless the cumulative maximal force, perpendicular to the path, from
previous iterations exceeds 0.1 eV/Å. The data is limited to molecules with up to 7 heavy atoms,
including C, N, and O. In order to train truly generalizable models we need to include all elements
and sizes of molecules.

ANI1x18,17 is a dataset based on active-learning and MD. The data generation procedure alternates
between proposing new configurations using various forms of MD and pseudo-MD, and accepting or
rejecting data based on the query by committee algorithm23. The dataset contains force and energy
calculations for 6 million molecular configurations.

QM9 (QM9x) is a ubiquitous benchmark dataset for Quantum Mechanics (QM) methods that contains
a multitude of QM features for 135.000 molecular equilibrium configurations. In order to make QM9
compatible with ANI1x and Transition1x we recalculated all configurations with the appropriate level
of DFT, and we refer to it as QM9x.

PaiNN
PaiNN14 is a message-passing GNN architecture designed for predicting molecular properties of
atomic systems represented as graphs. The molecular graph is generated by a neighborhood function
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Barrier NEB Convergence
MAE [eV] RMSE [eV] RMSD [Å] Rate Avg. CPU Time Avg. Iterations

ANI1x 0.51(1) 1.67(3) 0.28(2) 69.3% 37s 149
T1x 0.23(3) 0.52(1) 0.21(1) 80.3% 33s 135
QM9x 3.4(1) 3.59(8) 0.59(2) 35.0% 28s 111
DFTB 0.70 0.85 0.22 65.7% 82s 114
DFT - - - 84.1% 12h14m43s 101

Table 1: Comparison of potentials for Nudged Elastic Band (NEB). ANI1x, Transition1x and QM9x
indicate PaiNN models trained on the respective dataset. The barrier column shows Mean Average
Error (MAE) and Root Mean Squared Error (RMSE) of activation energies, and the Root Mean
Square Deviation of atomic positions (RMSD) between transition states found with DFT and surrogate
potentials. The Convergence column displays the convergence rate, average CPU time to compute a
reaction, and average iterations before convergence.

that assigns edges between atoms if they are sufficiently close. The network calculates molecular fea-
tures by letting neighboring atoms exchange messages calculated from their internal representations.
Conservative forces can be calculated by the back-propagation algorithm as the negative gradient of
energy with respect to positions.

Five hundred reactions are set aside from Transition1x for evaluating various models’ capabilities to
find reaction pathways. Five equivalent PaiNN models are trained on each of ANI1x, QM9x, and the
remaining data from Transition1x. The models have three hidden layers with 256 neurons in each.
The molecular graph is generated with a cutoff radius of 5 Å. The models are trained with the ADAM
optimizer, a batch size of 75, an initial learning rate of 10−3, and a scheduler that scales the learning
rate with a factor of 0.8 if the model has not improved for 5000 training steps.

Results

We trained five PaiNN models on each of Transition1x, ANI1x, and QM9x, and evaluated their
capability to predict transition states on test reactions set aside from Transition1x. In Table 1 we report
convergence rate, timings, Mean Average Error (MAE), Root Mean Squared Error (RMSE) and Root
Mean Square Deviation of atomic positions (RMSD) of the various models’ predictions. Datasets in
the leftmost column represent PaiNN models trained on the respective dataset. Density Functional
based Tight Binding (DFTB), is a fast and cheap approximation to DFT, used as a benchmark.
We do not report standard deviation of MAE and RMSE of DFTB predictions as the algorithm is
deterministic, whereas the performance of the PaiNN models depends on the training seed. The
predicted activation energy is the difference between energies of reactant and transition state, while
the error is the difference between the activation energies predicted by the surrogate potential and
DFT. ML potentials trained on Transition1x outperform all other tested surrogate potentials in terms
of MAE, RMSE and RMSD. QM9x contains only equilibrium configurations, and its models have not
learned the intricacies of the PES around reaction pathways. This is reflected in the results through
low convergence rates and high errors.

Figure 1 compares cross sections of PESs, spanned by reactant, product, and transition state of the
reactions, calculated using DFT, and PaiNN trained on Transition1x, for two different reactions.
The x and y axes are basis vectors describing the plane in units of Å, and the z-axis and color-
coding show the atomization energy of configurations in the plane in eV. Not only does PaiNN
trained on the Transition1x accurately calculate the barrier energy for the reaction, it also predicts
an almost identical PES in the vicinity of the MEP and correctly identifies the plane spanned by the
configurations defining the reaction.

Figure 2 displays the performance of each surrogate potential. Panel a is the distribution of RMSDs
between transition states predicted by surrogate potentials and DFT. The distributions are unnor-
malized to reflect convergence ratios. Panel b compares activation energies found by DFT on the
x-axis with energies found by surrogate potentials on the y-axis. Models trained on ANI1x tend to
overestimate activation energies as they have not seen the low energy valleys connecting equilibrium
configurations, while DFTB tends to underestimate activation energies. Correcting ANI1x and DFTB
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(a) Reaction involving C4N2H8. Follow this link to see GIF of reaction.
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(b) Reaction involving C4NOH7. Follow this link to see GIF of reaction.

Figure 1: Minimal Energy Paths (MEPs) for two different reactions, found with the Nudged Elastic
Band (NEB) algorithm, applying the Graph Neural Network (GNN) architecture PaiNN, trained on
Transition1x, and DFT as potentials. The MEPs are projected onto intersections of the Potential
Energy Surfaces (PESs) spanned by product, reactant and transition-state of the converged MEPs.
The x- and y-axes are basis vectors describing the plane. The PESs have been calculated in the
vicinity of the MEPs with the respective potential and is shown with colors and on the z-axis.
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Figure 2: Performance of surrogate potentials compared to DFT. Panel (a) displays the unnormalized
distribution of Root Mean Square Deviation of atomic positions (RMSD) between transition-states
found by DFT and surrogate potentials. Panel (b) displays activation energies found by DFT on the
x-axis, and found by surrogate potentials on the y-axis. Points that lie on the dashed line have been
calculated perfectly.

for systematic error leads to a MAE of 0.48 eV and 0.48 eV and RMSE of 1.66 eV and 0.62 eV for
ANI1x models and DFTB, respectively.

Conclusion
Relevant data is as important as expressive models for solving higher-order tasks in computational
chemistry. We have presented the Transition1x dataset which contain force and energy calculations
for 10 million molecular configurations on and around reaction pathways, and used it to train a fast
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and accurate ML calculator that can predict reaction pathways for general organic reactions. We
achieved a MAE of 0.23 eV on activation energies on unseen reactions when compared to evaluating
the PES with DFT, while simultaneously speeding up the MEP-search significantly.
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Impact Statement
Transition1x and QM9x
We believe that Transition1x24 is an important contribution to the completeness of available data in
the literature for ML for molecular science. It provides a different type of data, facilitating new down-
stream tasks for ML models. It is calculated with the 6-31G(d)21 basis set and ωB97x22 functional,
which makes it compatible with the ANI1x17,18, and permits training models with rich representa-
tions by leveraging strengths from both datasets. The ubiquitous QM925, dataset was recalculated
with the appropriate level of theory and released under the name QM9x24. Data loaders, examples,
and scripts for Transition1x and QM9x are available in their respective repositories - Transition1x:
https://gitlab.com/matschreiner/Transition1x, and QM9x: https://gitlab.com/matschreiner/QM9x. The
data collection procedure for Transition1x is scalable and can easily be extended to include new
elements and reactions.

NeuralNEB

NeuralNEB is an accurate, inexpensive, and general ML calculator for transition-state and MEP search
that outperforms NEB with DFTB26 as potential, both in terms of accuracy and computational cost. It
yields a new and better trade-off between speed and accuracy for screening of large reaction-networks.
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Checklist

1a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? We believe that the contribution of our dataset and NeuralNEB algorithm solves the
problems we’ve outlined in the abstract and introduction.

1b) Have you read the ethics review guidelines and ensured that your paper conforms to them? Yes

1c) Did you discuss any potential negative societal impacts of your work? The work we have done is
of an extremely abstract character and it is extremely hard to guess the impact it will have on society.

1d) Did you describe the limitations of your work? The limitations are limited elements and size of
molecules in the dataset. We mention this.

3a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? Yes, we have made thoroughly documented
repositories that can reproduce the datasets and run the algorithms presented in this paper.

3b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
Yes.

3c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple
times)? Yes.

3d) Did you include the amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? Yes

4a) If your work uses existing assets, did you cite the creators? Yes

4b) Did you mention the license of the assets? No

4c) Did you include any new assets either in the supplemental material or as a URL? No

4d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? No

4e) Did you discuss whether the data you are using/curating contains personally identifiable informa-
tion or offensive content? No, it is molecular data.
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