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Abstract

Upcoming cosmological weak lensing surveys are expected to constrain cosmo-
logical parameters with unprecedented precision. In preparation for these surveys,
large simulations with realistic galaxy populations are required to test and validate
analysis pipelines. However, these simulations are computationally very costly –
and at the volumes and resolutions demanded by upcoming cosmological surveys,
they are computationally infeasible. Here, we propose a Deep Generative Modeling
approach to address the specific problem of emulating realistic 3D galaxy orien-
tations in synthetic catalogs. For this purpose, we develop a novel Score-Based
Diffusion Model specifically for the SO(3) manifold. The model accurately learns
and reproduces correlated orientations of galaxies and dark matter halos that are
statistically consistent with those of a reference high-resolution hydrodynamical
simulation.

1 Introduction

Future wide-field astronomical imaging surveys, such as the Vera C. Rubin Observatory Legacy
Survey of Space and Time2, Roman Space Telescope3 High Latitude Survey and Euclid4 will provide
precise constraints on cosmological parameters by imaging billions of galaxies. Deriving physical
understanding from these data will require increasingly costly large-volume simulations with high
resolution to test and validate analysis pipelines [DeRose et al, 2019, 2021, Korytov et al., 2019] and
to constrain cosmology via Simulation-Based Inference [SBI; Jeffrey et al., 2021].
In this regard generative machine learning approaches represent an interesting avenue as they could
serve as fast and robust emulators to greatly accelerate parts of the simulation pipelines. In particular,
they could be used to populate realistic galaxies in large volume dark matter only simulations. Most
machine learning methods in this line of research have been concerned with modeling scalar properties
of galaxies, however in this work we are particularly interested in modeling the 3D orientations of
galaxies and their host dark matter halos in simulations. These intrinsic orientations can indeed
contaminate measurements of weak gravitational lensing in upcoming surveys and constitute a major
source of systematic errors if not accounted for [Joachimi et al., 2015].
Diffusion models are flexible in their domains that the datal ives, we want to jointly model various
properties that live on various different spaces/manifolds
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Currently, score-based diffusion models represent the state-of-the-art in generative tasks such as:
image, audio and molecules generation. [Hoogeboom et al., 2022]. Modeling distributions on the
manifold of 3D rotations is however a non trivial task, and to address this problem we develop a new
type of score-based diffusion model specifically for the SO(3) manifold, by extending the Euclidean
framework introduced in Song et al. [2021]. We chose diffusion models due to their flexibility
to model data that live on various different spaces (e.g. scalars and rotation matrices) compared
normalizing flows and due to their stability compared to Generative Adversarial Networks. Based on
these developments, we build a conditional generative model on SO(3) which allows us to sample
from the posterior distribution of 3D orientations of galaxies and dark matter halo given information
about their surrounding gravitational tidal field.

2 Related Work

Machine learning approaches have been adopted in astrophysics and cosmology in various contexts,
including emulation methods, inference and forward modeling [Dvorkin et al., 2022]. In particular,
deep generative models have been implemented in the works of Jagvaral et al. [2022] for generative
modeling of correlated galaxy properties, such as shapes and orientations, with graph-based generative
adversarial networks. Our work takes the next step to build generative models for various galaxy
properties associated with galaxy and halo orientations (which are described by a non-Euclidean
manifold) with score-based denoising diffusion models.

3 Score-Based Generative Model on SO(3)

Here we briefly outline our novel approach for modeling distributions on SO(3), heavily inspired
by the diffusion framework developed in Song et al. [2021]. The idea behind diffusion models is to
introduce a noising process that perturbs the data distribution until it reaches a nearly pure noise
distribution. Consider the following Stochastic Differential Equation (SDE) on the SO(3) manifold:

d𝑋 = f (𝑋, 𝑡) d𝑡 + 𝑔(𝑡) d𝑊, (1)
where𝑊 is a Brownian process on SO(3), f (· , 𝑡) : SO(3) → 𝑇𝑋SO(3) is a drift term, and 𝑔(·) : R→ R
is a diffusion term. Given samples 𝑋 (0) ∼ 𝑝data from an empirical data distribution 𝑝data at time
𝑡 = 0, the marginal distribution of samples 𝑋 (𝑡) evolved under this SDE at a subsequent time 𝑡 > 0
will be denoted 𝑝𝑡 , and will converge for large 𝑡 = 𝑇 towards a given predetermined distribution 𝑝𝑇
typically chosen to be easy to sample from. On SO(3), a natural choice for 𝑝𝑇 is U𝑆𝑂 (3) , the uniform
distribution on SO(3).
The key realization of Song et al. [2021] is that under mild regularity conditions this noising process
of the data process can be reversed, in particular through the following so-called probability flow
Ordinary Differential Equation (ODE):

d𝑋 = [f (𝑋, 𝑡) − 𝑔(𝑡)2∇ log 𝑝𝑡 (𝑋)]d𝑡. (2)
De Bortoli et al. [2022] recently extended this result to compact Riemannian manifolds, which include
in particular SO(3). This deterministic process is entirely defined as soon as the score function
∇ log 𝑝𝑡 (𝑋) ∈ 𝑇𝑋SO(3) is known, and running this ODE backward in time from samples 𝑋 (𝑇) ∼ 𝑝𝑇
down to 𝑡 = 0 will yield samples 𝑋 (0) ∼ 𝑝0 = 𝑝data. Training such a generative model will therefore
boil down to estimating this score function with a neural network.
While these results are direct analogs of Euclidean diffusion models [as in Song et al., 2021],
implementing similar models on SO(3) brings practical difficulties: Unlike in the Euclidean case
where the Gaussian is a closed-form solution of heat diffusion (a key element in Euclidean SGMs),
there is no closed-form solution on general Riemannian manifolds. Our contribution is to propose
solutions to these issues in order to implement efficient score-based diffusion models on SO(3).
On SO(3), although the exact heat kernel is only available as an infinite series [Nikolayev and Savyolov,
1970], it can be robustly approximated in practice either by truncating this series or by using a closed
form expression [Matthies et al., 1988], depending on the width of the kernel. It is used to define the
so-called Isotropic Gaussian Distribution on SO(3), IGSO(3) (𝑅, 𝜖) Nikolayev and Savyolov [1970],
Matthies et al. [1988], Leach et al. [2022], where 𝑅 ∈ SO(3) is a mean rotation matrix, and 𝜖 a scale
parameter. IGSO(3) enjoys tractable likelihood evaluation and sampling, and most importantly is
closed under convolution.
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Figure 1: Learned synthetic density on SO(3). On the left, starting from uniform noise on the sphere at 𝑡 = 𝑇 ,
solving the ODE Equation 4 transports noise samples back into the target density at 𝑡 = 0.

We can now define a noise kernel 𝑝 𝜖 (𝑋 |𝑋 ′) = IGSO(3) (𝑋; 𝑋 ′, 𝜖) which can be used to convolve the
data distribution such that 𝑝 𝜖 (𝑋) =

∫
𝑆𝑂 (3) 𝑝data (𝑋 ′)𝑝 𝜖 (𝑋 |𝑋 ′) d𝑋 ′. For simplicity, we further make

the following specific choice, for the diffusion SDE Equation 1: f (𝑋, 𝑡) = 0, 𝑔(𝑡) =
√︃

d𝜖 (𝑡 )
d𝑡 where 𝜖 (𝑡)

is a given noise schedule (e.g. 𝜖 (𝑡) = 𝑡). We then recover that convolving the data distribution with
an IGSO(3) of scale 𝜖 (𝑡) corresponds to the marginal distribution of the SDE at time 𝑡: 𝑝 𝜖 (𝑡 ) = 𝑝𝑡 .
This noise kernel allows us to use on SO(3) the usual Denoising Score-Matching loss at no extra
complexity compared to the Euclidean case. To learn the score function we introduce a neural score
estimator 𝑠𝜃 (𝑋, 𝜖) : SO(3) × R+★ → R3, which we train under the following loss:

L𝐷𝑆𝑀 = E𝑝data (𝑋)E𝜖∼N(0,𝜎2
𝜖 )E𝑝|𝜖 | (�̃� |𝑋)

[
|𝜖 | ∥ 𝑠𝜃 ( �̃�, 𝜖) − ∇ log 𝑝 | 𝜖 | ( �̃� |𝑋) ∥2

2
]

(3)

where we sample at training time random noise scales 𝜖 ∼ N(0, 𝜎2
𝜖 ) similarly to Song and Ermon

[2020]. The minimum of this loss will be achieved for 𝑠𝜃 (𝑋, 𝜖) = ∇ log 𝑝 𝜖 (𝑋).
Once the score function is learned through L𝐷𝑆𝑀 , we can plug it in Equation 2, yielding the following
sampling procedure given our specific choices for the SDE terms:

𝑋𝑇 ∼ USO(3) ; d𝑋𝑡 = −1
2

d𝜖 (𝑡)
d𝑡

𝑠𝜃 (𝑋𝑡 , 𝜖 (𝑡)) d𝑡 . (4)

We solve this ODE down to 𝑡 = 0 to yield samples from the learned distribution. We illustrate this
process in Figure 1. Note that this is a manifold-valued ODE, which we solve using Runge-Kutta-
Munthe-Kaas (RK-MK) algorithms for ODEs on Lie Groups (and we direct the interested reader to
Iserles et al. [2000] for a review). Finally, we note that this generative model can trivially be made
conditional, by conditionning 𝑠𝜃 (𝑋, 𝑡, 𝑦) on external information 𝑦 during training and sampling.

4 Application: Emulating Galaxy Intrinsic Alignments in the Illustris-TNG
simulations

Weak gravitational lensing occurs when light rays from distant galaxies get deflected due to the
presence of massive objects along their trajectory [e.g., Bartelmann and Schneider, 2001]. By
measuring the coherent shape distortions of ensembles of galaxies, we can study the lensing effect
caused by the distribution of matter in the Universe, and thereby learn about dark energy [Kilbinger,
2015]. One important systematic to model when measuring lensing is the intrinsic alignments (IA)
of galaxy shapes; IAs arise due to galaxies tending to point coherently towards other galaxies due
to gravitational tidal effects, which mimics a coherent lensing effect [Troxel and Ishak, 2015]. For
cosmological measurements, IA must be taken into account, which means that realistic models for it
must be included in synthetic galaxy catalogs.

Cosmological Simulation We will explore the efficacy of our model using the hydrodynamical
TNG100-1 run at 𝑧 = 0 from the IllustrisTNG simulation suite [for more information, please refer to
Nelson et al., 2018, Pillepich et al., 2018, Springel et al., 2018, Naiman et al., 2018, Marinacci et al.,
2018, Nelson et al., 2019]. We employ a stellar mass threshold of log10 (𝑀∗/𝑀⊙) ≥ 9 for all galaxies,
using the stellar mass from their SUBFIND catalog, and select the central galaxies from each group
for our analysis. The corresponding host dark matter halos were used to study halo alignments.

Results Throughout the section we refer to the sample generated from the diffusion model as the
SGM sample, and the sample from TNG100 as the TNG sample. The inputs to the model are the
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Figure 2: The two-point ED correlation function, 𝜔(𝑟), which captures the correlation between position and
the axis direction, of all galaxy (right) and dark matter halo (left) axes with galaxy positions: the solid lines show
the measured values from the TNG simulation, while the dashed lines show the generated values from the SGM.
The top panels show measured 𝜔(𝑟) values, and the bottom panels show the ratio 𝜔(𝑟) from the SGM to that
measured in TNG. The SGM curve was shifted by 5 per cent to the left for visual clarity. For the ellipsoid, we
denote the major, intermediate, and minor axes as 𝑎, 𝑏, and 𝑐, respectively.

TNG100 gravitational tidal field (obtained from the 3D tidal tensor which carries some information
about the alignment at large scales), and the outputs are the 3D orientations of halos and central
galaxies: the model generates the orientations of halos and galaxies conditioned on the tidal field.
We test our model using the 3D orientation-position correlation function, 𝜔(𝑟), often referred to as
the ED correlation. It captures the correlation between overdensity (galaxy positions) and orientations
of the selected halo/galaxy axes (modeling the halos/galaxies as ellipsoids and selecting either the
major, intermediate, or minor axis). Positive 𝜔(𝑟) values indicate that the selected halo/galaxy axis
exhibits a coherent alignment towards the positions of nearby galaxies. The ED correlation functions
for all three axes of the halos and galaxies are presented in Fig. 2. Here, the errorbars were calculated
using the jackknife estimator. In general, the qualitative trend of ED as a function of 3D separation is
captured by the SGM for both DM halos and central galaxies. For small scales (below 𝑟 ≤ 1 Mpc/h),
there is a general deviation from the measured values, which may be explained by the highly complex
non-linear processes that might not have been captured by the neural network. Quantitatively, for the
major axes of both halos and central galaxies, the generated samples agree well with the simulation.
For the intermediate axes of DM halos and central galaxies, the signal is very weak, though the SGM
managed to captured the correlation with statistical consistency. However, for the minor axes, the
SGM model slightly underestimates the correlation and overestimates it for central galaxies at small
scales.
Overall, the SGM model can describe synthetic densities with high statistical correlations (as illustrated
in Figure 1), and those with low statistical correlations, as shown in the case of galaxy/halo alignments.
Regarding the limitations, the model did not capture the correlations at small scales to a good
quantitative agreement, for which adding a graph-based layer may help [Jagvaral et al., 2022].

5 Conclusions

We have introduced a novel score-based generative model for the SO(3) manifold, and applied it in
an astrophysical context to the modeling of the 3D orientation of galaxies and dark matter halos in
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the TNG100 hydrodynamical simulations. Predicting galaxy properties given a dark matter halo,
or vice versa, is known as the galaxy-halo connection. Deep generative models show promise in
tackling this high-dimensional multivariate problem. We have demonstrated that a smaller subset
of the problem of modeling halo/galaxy orientation given the tidal field can be addressed with
score-based denoising diffusion models. The diffusion model generates orientations that have
statistical correlations consistent with those of the cosmological simulation, in addition to reproducing
high-correlation synthetic densities on SO(3). In the future, we would like to extend this work by
implementing a graph layer in order to fully capture the correlation at non-linear (small) scales and
extend the number of halo and galaxy properties predicted by the model. Applying our model to a
large volume cosmological simulation, to test the ability to model these alignments, will be highly
useful for future weak lensing surveys.

Broader Impact

The proposed methodology of deep manifold learning on SO(3) will be practical in many disciplines
outside of astrophysics/cosmology. For instance, in robotics the problem of estimating poses of
objects is an intensely studied problem and our method provides a way of tackling this problem from
a generative perspective with diffusion models. Additionally, in biochemistry it is often hard to find
the optimal angle for molecular docking; with our proposed method biochemists could efficiently find
the optimal angle that minimizes the potential energy. We do not believe that our work poses any
negative societal impacts or ethics-related issues.
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