
Molecular Fingerprints for Robust and Efficient
ML-Driven Molecular Generation

Ruslan N. Tazhigulov, Joshua Schiller, Jacob Oppenheim, Max Winston
EQRx, Inc.

50 Hampshire St., Cambridge, MA 02139, USA
{rtazhigulov, jschiller, joppenheim, mwinston}@eqrx.com

Abstract

We propose a novel molecular fingerprint-based variational autoencoder applied for
molecular generation on real-world drug molecules. We define more suitable and
pharma-relevant baseline metrics and tests, focusing on the generation of diverse,
drug-like, novel small molecules and scaffolds. When we apply these molecular
generation metrics to our novel model, we observe a substantial improvement in
chemical synthetic accessibility (∆SAS = -0.83) and in computational efficiency up
to 5.9x in comparison to an existing state-of-the-art SMILES-based architecture.

1 Introduction

Machine learning (ML) driven molecular generation is becoming an industry standard among compu-
tational and medicinal chemists for exploration of chemical space and drug design. Since the 1980s,
the biopharmaceutical industry has used ML methods on two primary tasks in drug development:
generating novel molecules and predicting their properties (e.g. quantitative structure activity re-
lationship, QSAR). The deep learning revolution has enabled these tasks to move from disparate
strategies, to models based on the embedding of chemical structures in a high dimensional space,
either implicitly or explicitly. We focus on the first task here, as the second task remains limited in
applicability by the size of training datasets outside a handful of well-studied molecular sets and
properties.

Representation of the chemical structures of the molecules can be split into two major classes: 1D
string-based representations, and 2D/3D molecular graphs. While 2D/3D graphical representations
can directly capture the connectivity between atoms, graphs are provably more difficult and slow to
generate than 1D string sequences as graph generation is known to be an NP-hard problem [1, 2].
The most common type of 1D string representation of molecules is SMILES (Simplified Molecular
Input Line Entry System) [3]. This simplistic string-based representation transforms a molecule into
a sequence of characters based on the set of predefined atom ordering rules. Using 1D strings for
molecular representation has proven beneficial, enabling the reapplication of existing neural network
architectures that have been previously developed for natural language processing (NLP) tasks.

In principle, there is hardly any limit on representation of the molecules with SMILES strings.
While one molecule can map to its multiple equivalent SMILES representations, typically, only one
canonical SMILES representation is used. Arús-Pous et al. [4] showed that augmenting training data
with randomized versions of SMILES strings leads to generalization to larger drug-like chemical
spaces than solely canonical SMILES (single representation), and increases model performance on
generative tasks. A model trained with randomized SMILES was able to generate at least double the
amount of unique molecules compared to models based on canonical SMILES.

Although several various model architectures have been developed (VAEs[5, 6], cRNN[7], GAN[8],
etc), a lack of meaningful standardized metrics and benchmarks for molecular generation makes it
difficult to evaluate and compare them for their actual application in the drug discovery process. For
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example, despite the increasing prevalence of molecular generation in the pharmaceutical industry,
performance in the literature largely continues to be measured by on-the-fly metrics such as recon-
struction accuracy. While these on-the-fly metrics are important in the training and testing processes,
ultimately metrics capturing computationally-efficient generation of novel chemical matter are more
relevant. Given the utility of structural chemical variation in modern drug discovery, capturing unique
scaffolds[9] and structural similarity of generated molecules within metrics is vital for the field to
advance.

Building on these results, we investigated the use of molecular fingerprints for generating novel
chemical matter instead of using SMILES as an input. Unlike SMILES representations, any molecular
structure can be deterministically mapped to its fingerprint. Previously it had been assumed that
molecular fingerprints are completely uninvertible due to the complex rules of construction and the
hash mapping used in implementation. However, Le et al. [10] have shown that circular extended
connectivity fingerprints (ECFP) can be at least partially invertible. This presented an opportunity for
use in molecular generators since circular molecular fingerprints represent ideal encoders: they are
fast to compute, contain a high amount of information, and are related to underlying molecular graphs
by design. Given all of these advantages, we sought to build a novel fingerprint-based architecture
that could outperform existing state-of-the-art SMILES-based molecular generators.

Here, we set out to benchmark and synthesize existing literature approaches, build best-in-class
models, and propose a novel molecular fingerprint-based variational autoencoder (VAE) for molecular
generation. In addition to the common on-the-fly metrics used in the literature, we benchmark
the implemented models with the computational efficiency of the molecular generation process,
determined by the number of structurally unique molecules that a model has generated. Furthermore,
in an attempt to highlight the most relevant chemical novelty, we focus on characterizing novel
chemical matter with respect to chemical distance from reference target molecules. We thus attempt
to define pharma-relevant benchmarks and tests for molecular generation focused on the generation
of drug-like novel small molecules and scaffolds.

2 Methods

Molecular ChemVAE: SMILES-based variational autoencoder. In the present work, we trained a
molecular ChemVAE model that is descended from the one presented by Gómez-Bombarelli et al. [5].
We applied numerous architecture and training optimizations suggested in the ML molecular genera-
tion literature. Among them, we benchmarked train/test reconstruction accuracy (see Appendix A.1),
while still focusing on molecular generation capabilities of the models. Note that while the original
ChemVAE was trained on ZINC and QM9 datasets [5], we opted for ChEMBL [11], a manually
curated database of bioactive molecules with drug-like properties. Our cleaned-up dataset contained
1.83M of unique and valid, from SMILES syntax perspective, molecules. 90 percent of the molecules
were used for training, with the 10 percent allocated for testing. For ease of computation, we put
a cap of 200 on the maximum length of the SMILES strings. We also implemented the approach
discussed by Arús-Pous et al. [4], randomizing the original canonical SMILES strings on the fly. This
procedure results in a different SMILES string for the same molecule in each epoch. More details on
model parameters and hyperparameters can be found in Appendix A.1.

Molecular FpVAE: Fingerprint / SMILES-based variational autoencoder. Our Fp / SMILES-
based variational autoencoder (FpVAE) also used an entire ChEMBL dataset. We obtained circular
Morgan fingerprints (non-count version, nBits = 4096, radius = 2), an analogous open-source version
of the ECFP fingerprints, for each molecule in the dataset. We have not observed any significant
benefits from increasing the number of bits or radius parameter, as Le et al. [10] also observed
and indicated for the ECFP fingerprints in their work. The same 90/10 split was used between the
training and testing sets. We opted for the canonical SMILES representation of the molecules for
training of the FpVAE model. More details on model parameters and hyperparameters can be found
in Appendix A.2.

MG-Bridge: SLERP-based navigation in chemical latent space for molecular generation.
A high-dimensional chemical latent space generated by the ML models tends to be substan-
tially sparse. Effective sampling of the sparse chemical latent space is becoming a corner-
stone of ML-driven molecular generation process. For example, one can imagine that per-
turbing a latent space vector with a Gaussian noise can potentially produce a new molecule.
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Figure 1: Molecular genera-
tion bridge (MG-Bridge).

However, the optimal perturbation noise that allows one to explore
the latent space efficiently and produce a substantial number of
unique and novel molecules per computational time remains un-
clear. Moreover, drug discovery researchers typically focus on a few
(typically a pair) of active compounds, not just a single compound.
Hence, effective techniques that allow one to explore the latent space
between multiple active compounds are needed. Gómez-Bombarelli
et al. [5] introduced the idea of sampling along the trajectories be-
tween a pair of reference molecules in the latent space to generate
novel molecules based on linear or spherical linear interpolation
(LERP/SLERP). Here, we introduce a molecular generation pro-
cedure named as MG-Bridge (Molecular Generation Bridge). The
procedure combines SLERP and perturbation of latent space vectors
with a Gaussian noise (σ) into one method (Fig. 1, more details in

Appendix A.3). MG-Bridge enables efficient molecular generation and exploration of the chemical
latent space between a pair of active reference compounds.

3 Results and Discussion

Table 1: Reference pair molecules used
for benchmarking of VAE models

Class Target A Target B

NSAID Ibuprofen Naproxen
EGFR Gefitinib Erlotinib
VEGFR Pazopanib Sunitinib
PI3K Alpelisib Inavolisib

We benchmarked the molecular generation performance
of both existing molecular ChemVAE and a new FpVAE
models for four reference pairs of drug molecules. Outside
of NSAIDs, they reflect recent and current areas of drug
development spanning different levels of molecular com-
plexity (Table 1). We applied chemoinformatic filters to the
obtained molecular generation sets based on quantitative
estimate of drug-likeliness (QED) [12], synthetic accessi-
bility score (SAS) [13], and novel generic Bemis-Murcko
(BM) scaffolds [9]. We incorporated these filters in our benchmarks.

ChemVAE

FpVAE

Figure 2: MG-Bridge scan for
optimal perturbation noise.

Our results indicate the importance of introducing perturbation in
SLERP and using MG-Bridge. We show that SLERP has to be
enhanced for the real-world applications, because a pure application
of SLERP led to a handful (O(10)) of unique and novel molecules
(Fig. 2, σ = 0.0) across all four reference pairs. Once perturbation
is applied, it becomes clear that the effect of perturbation and its
size varies for different molecular pairs. The results also indicate
different levels of sparsity in the chemical latent space across all pairs
and various model architectures. One should note that the novelty–a
metric that is typically used to account for molecules not present in
the original training set–of molecules generated by the MG-Bridge is
>99% for the obtained valid (from SMILES perspective) and unique
molecules.

Figure 3: Efficiency of molecular generation
and key performance metrics across four ref-
erence target pairs.

Furthermore, our results show that the FpVAE model
significantly outperforms the ChemVAE model in
molecular generation computational efficiency1 by
as large as a factor of 5.9, even more notably when
physicochemical property (PC filter: QED ≥ 0.4,
SAS ≤ 4.0) and novel BM (NBM) scaffold filters are
applied (Fig. 3). The PC filter is aimed to filter out
the molecules that are not drug-like or hard to synthe-
size. The NBM filter is aimed to keep the molecules
with the generic BM scaffolds not belonging to the
original reference molecules, and therefore, it aims
to incorporate the chemical structural diversity.

1NVIDIA Tesla T4, 16 CPUs, 60GB RAM
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Moreover, by more rigorously examining the physicochemical properties of generated molecules,
we demonstrate that the molecular FpVAE outperforms the molecular ChemVAE model. FpVAE is
able to generate more sensible, drug-like and synthesizable molecules across all four reference pairs
(Fig. 4A). These results imply that the FpVAE learns chemical rules substantially more efficiently than
the SMILES-based ChemVAE. Furthermore, they also indicate that circular molecular fingerprints
have a better inductive bias compared to SMILES, demonstrating the efficacy of fingerprints for
molecular generation. Since the same number of latent space vectors is sampled (with the optimal
perturbation noise) for both FpVAE and ChemVAE models, we also show that significantly larger
number of unique and valid molecules are generated with the FpVAE model (Fig. 4A).

Ibuprofen-Naproxen

Pazopanib-Sunitinib

Gefitinib-Erlotinib

Alpelisib-Inavolisib

A B

ChemVAE

FpVAE

Figure 4: (A) QED-SAS properties computed for the sets obtained with four reference pair molecules.
The larger the QED and the smaller the SAS scores (bottom right) indicates better results. (B) RDS
computed for the molecular generation sets obtained for EGFR inhibitors (Gefitinib-Erlotinib pair).

We also evaluated structural diversity in the molecular generation sets by computing the relative
Dice similarity, RDSi = dBi−dAi

1−dAB
, where d is Dice similarity between two Morgan fingerprints

corresponding to two different molecules. RDS ∈ [-1.0, 1.0], where the negative values indicate
that a generated molecule is chemically similar to target A, while the positive values indicate that a
molecule is chemically similar to target B. The results in Fig. 4B indicate that the molecular FpVAE
model is able to generate a substantially larger number of unique and valid molecules compared
to ChemVAE for the optimal perturbation noise and with the same number of latent space vectors
provided for decoding. Moreover, molecules generated by FpVAE are more drug-like and more likely
synthesizable, i.e. more of them pass the PC filter. Furthermore, when it comes to chemical diversity
in the generated sets, the FpVAE model is able to generate significantly larger number of molecules
with NBM scaffolds. One should note that the most chemically differentiated and diverse molecules
lay in the interval of RDS ∈ (-0.3, 0.3), and the FpVAE model generates a substantially larger number
of molecules in this interval. These results also illustrate that the chemical latent space, generated
by both ChemVAE and FpVAE models, is not really homogeneous and the sparsity varies, e.g. it
is easier to generate more chemically sensible and diverse molecules in the vicinity of gefitinib vs.
erlotinib. The sparsity and compactness of the chemical latent spaces will be addressed in the future
work.

4 Conclusion

In the present work, we proposed and discussed the performance of a novel variational autoencoder
based on the molecular fingerprints (FpVAE). Importantly, we also proposed a set of baseline
pharma-relevant benchmarks for comparison of molecular generation performance across various
model architectures, methods, molecules, and filters that can be applied for unbiased comparative
analysis. These benchmarks put a focus on the number of drug-like, synthesizable, and structurally
diverse molecules generated per computational time. We showed that the FpVAE model is able to
generate molecules more efficiently compared to the purely SMILES-based ChemVAE model. We
also highlighted that the FpVAE generation sets obtained for various reference drug molecule pairs
representing different classes outperform the ones obtained with the purely SMILES-based model in
chemical synthetic accessibility and structural diversity.
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5 Broader Impact

The ability to efficiently generate novel drug-like molecules at scale has the potential to accelerate
drug discovery and become a valuable tool in tackling societal challenges such as drug pricing and
bringing new medicines at a fraction of the cost of today’s leading therapies. This work offers
both a novel methodological approach (FpVAE) for more efficient generation of novel drug-like
molecules, as well as new suggested benchmarks and metrics to better guide future innovation in
molecular generation. The potential negative impact includes the methods and approaches being used
for creating and producing harmful molecules.
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A Appendix

A.1 Molecular ChemVAE model: details on parameters and hyperparameters

Data preparation. We used ChEMBL-28 database [11] (named as ChEMBL-1.83M in this work).
For our early exploration, we also used a subset of ChEMBL-28 database, namely ChEMBL-567k.
For ChEMBL-567k, we only included the active compounds with IC50/EC50 values ≥ 6, similar to
Gupta et al. [14], and we restricted the range for the length of included SMILES strings between 10
and 100 for computational purposes. Note that Gómez-Bombarelli et al. [5] used a subset of ZINC
dataset (namely ZINC-249k in Table 2) for training of the original ChemVAE model.

We canonicalized the SMILES strings using RDKit package. We treated compounds as racemates, i.e.
any information about stereochemistry (represented by "@", "/", and "\ \" tokens) was removed. We
also removed all ionic non-bonded components of the original SMILES strings (represented by ".").
For ChEMBL-1.83M, we restricted the maximal length to 215 to account for equivalent randomized
SMILES representations that are longer than their original canonical SMILES counterparts. The
shorter strings were padded with spaces to this same length.

SMILES tokenizer. On top of multiple equivalent representations, SMILES strings can be tokenized
in various ways, and more advanced tokenizers have been emerging. In the present work, we relied on
the atomwise tokenizer from SMILES Pair Encoding (SPE) package [15]. SPE package is licensed
under Apache-2.0 license. SPE aims to augment the widely used atom-level SMILES tokenization
by adding chemically explainable and human-readable SMILES substrings as tokens. Case studies
showed that SPE could demonstrate superior performances on both molecular generation tasks with
regard to novelty, diversity, and ability to resemble the training set distribution [15]. Therefore, our
encoding used 193 tokens, which included auxiliary tokens obtained during the randomized SMILES
procedure.

Target A

Target B

Encoder

(CNN / 
MLP)

Decoder 

(LSTM)

d = ℝ150

Sample chemical 

latent space

Encode down 

to latent space

Decode 

sampled points

S
M

IL
E

S
 /

 

F
in

g
e

rp
ri

n
t

S
M

IL
E

S

Figure 5: A schematic representation of variational autoen-
coders trained and applied for molecular generation in the
present work.

Model. The VAE deep network
structure of our molecular ChemVAE
model was as follows (Fig. 5): the
encoder used three 1D convolutional
layers of 9, 9, 10 convolution ker-
nels with the kernel sizes of 9, 9, 11,
respectively, followed by two fully
connected layers with dimensions of
435 and 150. The latter one corre-
sponds to the dimension of the chem-
ical latent space vectors, with the vec-
tor values bounded between -1 and 1
by applying tanh activation function.
Batch normalization was enforced at
the encoder level after each convo-
lution layer. The decoder included
three stacked layers of long short-term
memory (LSTM) networks[16] with the hidden dimension of 512. The last layers included a fully-
connected layer of the vocabulary dimension, followed by the softmax layer with the argmax being
applied. The variational (KL) loss was annealed according to sigmoid schedule after 20 epochs,
running for a total 100 epochs, and He-initialization was applied to all fully-connected layers. The
batch size was set to 256. AdamW optimizer[17] with the learning rate of 0.0001 and weight decay of
0.001 was used for backpropagation, and we also used a learning rate scheduler: the learning rate was
decreased by a factor of 0.7 if the token-by-token reconstruction accuracy on the testing set was not
improved within the next 5 epochs. Both cross-enthropy and KL losses were averaged over all tokens
that combined into a total loss. The best performance model based on the highest token-by-token
reconstruction accuracy for the testing set was chosen further for molecular generation tasks.

A.2 Molecular FpVAE model: details on parameters and hyperparameters

SMILES tokenizer. For tokenization of the output, we used the same atomwise tokenizer [15]
that we also applied for the molecular ChemVAE model dataset. Encoding on the virtually entire
ChEMBL dataset (canonical SMILES) used 184 tokens.
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Table 2: Token-by-token accuracy obtained for the test
sets of molecular ChemVAE and FpVAE models trained
with different datasets

Architecture Dataset Token-by-token

ChemVAE ZINC-249k 0.972
ChemVAE ChEMBL-567k 0.978
ChemVAE ChEMBL-1.83M 0.996
FpVAE ChEMBL-567k 0.878
FpVAE ChEMBL-1.83M 0.948

Model. The encoder part contained five
fully-connected layers with the dimensions
of 2048, 1024, 768, and 512, respectively,
with the last layer defining the dimension
of the latent space, 150 (Fig. 5). Our
early results also demonstrated no gain in
performance when the dropout for fully-
connected layers in the encoder was ap-
plied. We set the dropout rates to 0.05,
0.10, 0.15, and 0.20, and similarly to what
Le et al. [10] indicated in their work, we

have not observed any further improvements from using dropout regularization (Table 3). The decoder
part contained three stacked layers of LSTM networks[16] with the hidden dimension of 512. The
last layers included a fully-connected layer of the vocabulary dimension, followed by the softmax
layer with the argmax being applied. The variational (KL) loss was annealed according to the same
sigmoid schedule after 20 epochs, running for a total 200 epochs, and He-initialization was applied to
all fully-connected layers. The batch size was set to 256. AdamW optimizer[17] with the learning
rate of 0.0005 and weight decay of 0.005 was used for backpropagation, and we also used a learning
rate scheduler: the learning rate was decreased by a factor of 0.7 if the token-by-token reconstruction
accuracy on the testing set was not improved within the next 5 epochs. Both cross-enthropy and KL
losses were averaged over all tokens that combined into a total loss. The best performance model
based on the highest token-by-token reconstruction accuracy for the testing set was chosen further for
molecular generation tasks.

Table 3: Token-by-token, molecular reconstruction, and Tanimoto accuracy (computed between cor-
responding Morgan fingerprints) metrics obtained for the test sets of FpVAE models (ChEMBL-567k
dataset) trained with different dropout rates in fully connected layers. Numbers in the parentheses are
computed for the decoded valid SMILES only

Dropout rate Token-by-token Molecule Tanimoto

0.00 0.878 0.141 (0.382) 0.293 (0.794)
0.05 0.873 0.092 (0.299) 0.232 (0.753)
0.10 0.862 0.055 (0.228) 0.171 (0.710)
0.15 0.851 0.034 (0.187) 0.126 (0.692)
0.20 0.836 0.014 (0.116) 0.075 (0.620)

A.3 MG-Bridge: details on chemical latent space sampling

The coarse-grained MG-Bridge runs were performed as follows: 100 grid points along the SLERP
trajectory between molecular target A and target B were perturbed 100 times, resulting in 10000
latent space vectors that were then decoded into SMILES. For each reference molecular pair, we
scanned across multiple parameters of the perturbation noise (σ) to obtain an optimal perturbation
noise per pair (Fig. 2). Once the optimal noise σ was obtained, we used the optimized value for
production MG-Bridge runs: 100 grid points along the SLERP trajectory were perturbed 5000 times,
resulting in 500000 latent space vectors that were then decoded into SMILES strings.
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