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Abstract

The study of quasar light curves poses two problems: inference of the power
spectrum and interpolation of an irregularly sampled time series. A baseline
approach to these tasks is to interpolate a time series with a Damped Random
Walk (DRW) model, in which the spectrum is inferred using Maximum Likelihood
Estimation (MLE). However, the DRW model does not describe the smoothness
of the time series, and MLE faces many problems in terms of optimization and
numerical precision. In this work, we introduce a new stochastic model that we
call Convolved Damped Random Walk (CDRW). This model introduces a concept
of smoothness to a DRW, which enables it to describe quasar spectra completely.
We also introduce a new method of inference of Gaussian process parameters,
which we call Neural Inference. This method uses the powers of state-of-the-
art neural networks to improve the conventional MLE inference technique. In
our experiments, the Neural Inference method results in significant improvement
over the baseline MLE (RMSE: 0.318 — 0.205, 0.464 — 0.444). Moreover,
the combination of both the CDRW model and Neural Inference significantly
outperforms the baseline DRW and MLE in interpolating a typical quasar light
curve (x2: 0.333 — 0.998, 2.695 — 0.981). The code is published on GitHub €).

1 Introduction

Quasars are astronomical sources powered by the accretion of matter falling onto the black hole in
a galaxy’s center. The accretion onto the black hole is a turbulent process, so the brightness varies
intrinsically over time. This variability not only allows for studying the region around the black hole
[LL] but also enables one to trace the evolution of the Universe through strong gravitational lensing
[2]. The former requires an interpretable model of radiation variability, whereas the latter requires
interpolation of a time series with irregular time sampling.

Due to the accretion turbulence, the variability of quasar radiation is usually modelled by a stochastic
Gaussian process called “Damped Random Walk” [DRW; [3]. This model has two main problems:
the first problem is that the DRW can model the quasar spectrum on time scales of years but not on
the scales of months, where the quasar spectrum steepens.
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Figure 1: Comparison of Convolved DRW and
DRW models in the interpolation of a typical
mock quasar light. The envelopes show 1o con-
fidence regions. CDRW has better mean and
uncertainty of interpolation both in observed re-
gions (upper right corner) and gap regions (mid-
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Figure 2: Power Spectrum of a real quasar
[black; [9], baseline DRW [blue p = 0; [10]
and CDRW (orange) introduced in this paper.
Error bars and x? are derived from MCMC sam-
pling [11;[12]. CDRW better describes the power
spectrum at high frequencies.

dle).

[45 155165 [7]]. The second problem is associated with the maximum likelihood estimation (MLE), which
is used to infer the parameters of a DRW: this method has convergence issues, high computation
complexity, and, sometimes, poor 20 constraints on the inferred parameters.

In this work, we aim to solve these two problems of conventional DRW modelling of quasar light
curves. In Section [2.1] we introduce a new physically-interpretable model Convolved Damped
Random Walk (CDRW) that well describes the quasar spectrum on time scales, from days to decades.
In Section [2.2] we propose the Neural Inference method that aims to solve problems of maximum
likelihood estimation. Our approach is task-specific in contrast to the generalized approach in [§]]. In
Section[3] we present the data. In Section[d] we present the experiments. We conclude in Section 5]

2 Methodology

2.1 Convolved Damped Random Walk model of quasar radiation

The conventional physical model of quasar light curve F'(t) is given by the lamp-post radiation g, p
and thin-disk reverberation Prp:

F(t) O</ grp(t —r,7)Prp(r, p)dr, )]
0

where 7 and p are the characteristic times of radiation from accretion onto the black hole and from its
re-radiation by the outer disk, respectively [13]]. Usually, F'(¢) is modelled as a DRW, but this model
fails to describe the power spectrum at high frequencies (Fig. [2). This discrepancy can be mitigated if
the driving lamp-post radiation gy, p(t) is assumed to be DRW instead. In this case, convolution with
thin-disk reverberation kernel Prp suppresses the power spectrum at high frequencies. The spectrum
of this kernel is well fitted by a softened powerlaw. Such a derivation brings us to a new model of
quasar radiation that we call Convolved Damped Random Walk (CDRW) with power spectrum:

o2

(14 w??)(1 4 w?p?)’

PSDCDRw(UJ) = (2)

where w is the circular frequency 27 f. Given 7 > p, T is correlation time. In turn, the reverberation
time p defines the smoothness of the curve. This model well describes the power spectra of real quasars
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Figure 3: Scheme of light curve interpolation based on the introduced Neural inference method.

on all frequencies (Fig. [Z). The newly introduced smoothness of p results in better interpolation
performance of the model (Fig. [T). Moreover, in border cases, it reduces to the main types of
stochastic processes: white noise, Matern v = 1.5 noise, DRW, and Random Walk (red noise).

2.2 Neural inference of Gaussian processes

Without prior knowledge of the quasar flux F' observed at times £°°%, the baseline approach to the
inference of a Gaussian process is MLE, that is, maximization of likelihood p(F'(t°**)|u, 0%, 7, p). In
the context of numerical methods, MLE requires matrix inversion that has computational complexity
O(N?3). For light curves with a high number of observations N, such an inference requires much
computational power, moreover, the numerical errors in matrix inversion can jeopardize the inference
results. In the context of the theory of optimization, MLE faces convergence issues due to orders of
magnitude differences between gradients on different parameters. Additionally, there are degeneracies
between the parameters and biases of modes of the posterior distribution — e.g. Bessel correction for
inverse Gamma posterior of sample variance [14]].

To mitigate these negative aspects of Gaussian process inference, we introduce a novel method that
we call Neural Inference. We use a neural network to predict the final correlation time 7 and an initial
guess of reverberation time p. In this case, maximization of the likelihood p(F(t°%), 7|u, o2, p)
leads to significantly more accurate parameters. Moreover, these estimations become more stable
with respect to the stochastic realisation of the studied Gaussian process.

3 Data

We carry out experiments on synthetic data that mimic real observations. The observations of quasars
have 135 £ 25 days-long annual gaps due to occultation by the Sun and bad weather. Within the
observation season in the n-th year, we model time sampling as a stochastic process:

-5 5
ﬂv ﬂ)}7 (3)

where PoissonP is a discrete Poisson process [15], that models short observation gaps, and € is
time in the night. The statistical form and parameters of the observation schedule correspond to the
COSMOGRALIL dataset [16]].

In this research, we consider 10 years-long light curves, based on the planned duration of the LSST
survey [17]. For training the neural network, we simulate the mock quasar radiation as a CDRW

process (eq. [2)):

obs
tn

1
= {tn; | tni = tno + ¢ + PoissonP;(A = 0.34, 3= 4) + €; [days], e; ~ U(

F(t°%) ~ N (i, Zoprw (t°%,02,7,p)), log(r) ~U(1.05,2.76), p~U(0.55,10). (4)

The distributions were derived from the previous observations of quasars — including both short-
cadence observations and long-duration surveys [45|18]]. Specifically, p,,,in, = 0.55 reduces CDRW to
DRW, which for 7,4, = 575 reduces to RW. The value p,,,4, = 10 results in a break of the spectrum
at the scale of two months, which outlines the spectral breaks reported in the papers [4; 15 165 [7].



Finally, 7,,,;»n ~ 11 to a minimal relevant DRW break reported in the work [[19]. The curves are
normalized to (-1,1). A 2-year-long sample from a mock light curve is presented in Fig.

4 Results

Table 1: The median performance in the inference of CDRW spectrum parameters for 1000 different
mock light curves with the same 7 = 540, p = 4.77. The introduced neural inference technique
outperforms the baseline MLE in every metric.

log-Corr. time log(T) Reverb. time p
Inference method MAD MAE RMSE MAD MAE RMSE

Max likelihood 0.207 0.241 0.318 0313 0369 0464
Neural inference  0.122  0.157 0.205 0.304 0.354 0.444

Table 2: The median performance in the interpolation of CDRW in the same setup as Table [2| The
mean 1(t) of interpolation predicted by introduced CDRW and Neural inference is only marginally
better than the baseline (MAE, RMSE). However, the uncertainty o (t) is significantly better, which
is shown with 2.

Observed periods Gap periods
Model Inference method 2 MAE RMSE 2 MAE RMSE
DRW Max likelihood 0.333 0.01 0.004 2.695 0.123 0.098

Convolved DRW  Neural inference  0.998 0.008 0.003 0981 0.121 0.093

Neural network. For training, we simulate a dataset of 300,000 labels log(7) and p according to eq.
and split them in train/validation/test in ratio 0.8/0.1/0.1. Both stochastic observation times £°** and
radiation F(+°*%) are sampled in the runtime of training to avoid overfitting of random realisations.
The architecture of the network is presented in Fig. [3] In the neural network, the data is interpolated
with B-splines on the grid (10,365), then processed by three ResNet blocks [20] with 64,128,256
filters. It is followed by linear reduction of the filters to 64 and the attention layer, which is applied
by the Learnable Dictionary Encoding (LDE) [21}22] with 64 clusters. Finally, the encodings are
linearly transformed to predictions of log(7) and p.

The neural network is trained with MSE loss for four epochs until convergence. It reaches RMSE
0.15 for log(7) and 0.98 for p on the test set. On Tesla P100, an epoch takes half an hour, given that
sampling of the data is done on the GPU. We carry out data sampling using Jax [23], the network
itself is implemented in PyTorch [24].

Experiments. To compare our methods to baseline approaches, we simulate 1000 mock quasar light
curves with different stochastic realisations of t°** and F(t°*%) (eq’s. , but the same spectral
parameters 7 and p for all these curves. First, we pick 7 = 540 as the median correlation time for the
observed quasars [19]]. Second, we pick p = 4.77, so it results in the break on a month scale, which
is midway between DRW p = 0 and the maximal reported break of two months.

For the first experiment, we compare the performance of Neural Inference (Fig[3) and baseline MLE
optimization [TNC; 25} 26]) for the inference of log(7) and p. The resulting metrics are presented in
Table[T} In this experiment, Neural Inference outperforms baseline MLE in every metric.

For the second experiment, we compare performance in the interpolation of the same curves on
a grid with a regular cadence of one day. In this experiment, the baseline approach to quasars is
interpolation with DRW, inferred with MLE. In turn, the introduced approach is interpolation with
CDRYVW, inferred using the neural inference technique. The resulting metrics are presented in Table
The difference between interpolation means p(t) (MAE, RMSE) is marginal, but the X2 of the new
method is significantly better and predicts much more reliable uncertainties than the baseline.



5 Conclusion

In this work, we introduced the new Convolved Damped Random Walk (CDRW) model of quasar
radiation (Sec. [2.1)) that well describes spectra of quasars on all the time scales. Additionally,
we introduced a new method of inference of Gaussian processes, which we call Neural Inference
(Sec. [2.2). This method uses neural networks to mitigate several problems of conventional MLE
optimization. A combination of these two novelties results in significant improvement in inference
and interpolation of a model of a typical quasars light curve (Tables [I] 2).

6 Impact statement

Impact on Astrophysics:

The new CDRW model decouples the temporal scales of accretion onto a black hole from that of
reverberation of the disk surrounding it. The introduced reverberation time p is the direct tracer of
the characteristic radius of the disk R}, that traces the mass of the black hole, Eddington luminosity,
and accretion efficiency. Therefore, the CDRW model introduces an explicit constraint on those
parameters, which is designed to enhance our understanding of galaxy physics.

On the other hand, p defines the short-scale characteristic time of quasar evolution. The distribution
of this parameter across quasars can help optimize the observation schedule to maximize the obtained
information while minimizing the load on the telescope.

In turn, the Neural Inference approach significantly elevates the quality of inference and interpolation
of mock quasar light curves. The improvement in inference results in more accurate information
about the physics of quasars. The improvement in interpolation quality reveals itself in the studies
of gravitationally lensed quasars. The combination of CDRW and Neural Inference provides better
uncertainties that result in the more accurate inference of lensing-induced time delays and, therefore
more strict constraints on the Hubble rate.

Impact on other domains:

Time series phenomena permeate our everyday lives — from finance and healthcare to climate science
and astrophysics, since the mathematical formulation of the task is often similar. The Gaussian
process, especially DRW, is a baseline approach in many fields. Moreover, people face the same
problems with MLE-based inference in all these fields. Therefore the introduced Neural Inference
technique can be applied out of the box to constrain the kernel of a Gaussian process for many
different types of data. Additionally, the convolutional term in the CDRW model can be well-adjusted
to any data in order to account for domain-specific short-term interaction.
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[N/AT . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A ]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We pose problems of the model and the inference|[I]
propose the solutions 2.T]2.2] and test the improvements @ The abstract has the same
structure.

(b) Did you describe the limitations of your work? [Yes] The limitations are given by the
distributions used to simulate the data[3]

(c) Did you discuss any potential negative societal impacts of your work? This is
methodology paper for studies of quasars and time series in general. So we don’t see
any negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] All the used data and papers are public. Human relations are not concerned
in the paper.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The as-

sumptions of quasar light model are given in the cited paper [13]. The mathematical
assumptions are given in the section 3]

(b) Did you include complete proofs of all theoretical results? Convolved DRW
spectral form is a direct consequence of the convolution theorem.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We present a
public GitHub repository with all the code left from the process of making the paper. It
containts all the notebooks needed to reproduce the paper’s numbers and figures.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify the most important hyperparameters in the section 4}
Small details are available in the published code.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In SectionE]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? We do not do it explicitly, as all the
resources are public.

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] All the used resources are public.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A| Not relevant for study of quasars.



5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No crowdsourcing
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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