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Abstract

Hadronization is an important step in Monte Carlo event generators, where quarks
and gluons are bound into physically observable hadrons. Previous work has
demonstrated first steps towards a machine-learning (ML) based simulation of
the hadronization process. However, the presented architectures are limited to
producing only pions as hadron emissions. In this work we use normalizing flows
to overcome this limitation. We use masked autoregressive flows as a generator for
the kinematic distributions in the hadronization pipeline. We condition normalizing
flows (NFs) on different hadron masses and initial configuration energies, which
allows for the emission of hadrons with arbitrary masses. The NF generated
kinematic distributions match the PYTHIA generated ones well. In this paper we
present our preliminary results.

1 Introduction

Particle collisions in collider experiments are simulated with Monte Carlo event generators, which
can be factorized into three steps: (i) generation of the hard process (the particle collision); (ii) parton
shower (the evolution from high energy to low energy, in which quarks and gluon are created); and
(iii) hadronization (the combination of quarks and gluons to observable particles, hadrons). While the
first two steps are perturbative in their nature, and thus under good theoretical control with significant
efforts devoted to improving the precision even further [1–4], the hadronization step is inherently
non-perturbative, i.e. it does not follow first principle and thus can not be described theoretically.
Therefore, phenomenological models with many free parameters are typically used instead, which
oftentimes do not cover the entire underlying physics well.
The two main models used in simulating hadronization are the Lund string model [5–7], where
partons are connected via QCD color strings with a linear potential, which are iteratively split into
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hadrons, and the cluster model [8–10], where partons are pre-confined into proto-clusters, which then
decayed into hadrons via sequential two-body decays. Both models have limitations. The string model
requires over O(20) parameters to describe the hadronization, and has some challenges describing
baryon production. The cluster model has fewer parameters, but the decays of large clusters can lead
to phenomenological problems such as predicting heavy baryon distributions which do not match data
well. Widely used event generators which simulate the above steps are PYTHIA [11], HERWIG [12],
and SHERPA [13].
In this project we propose a machine-learning (ML) based simulation for hadronization, aiming to
replace or complement the common used phenomological models used in event generators. Generative
Adversial Networks (GANs) [14], Variational Auto-Encoders (VAEs) [15–17] and Normalizing Flows
(NFs) [18] have demonstrated the ability for ML to generate convincing physical observables. In
addition, conditional generative models provide more flexibility and control of the output [19, 20].
Previous work demonstrated that GANs - used for the cluster model - [21] and different versions of
VAE-like sliced-Wasserstein Auto Encoders (SWAEs) - used for the Lund string model - [22] have
the potential to simulate parts of the hadronization process well. However, the presented models
were limited to the emission of only pions as a final state particle, and the training of the kinematic
distributions was performed separately with no correlation between the pz and pT distribution.
In this paper we present an updated version of MLHAD [22] utilizing NFs as a generator for the
kinematic distribution, which overcomes these limitations. This new architecture is able to learn
correlations between the kinematic distributions and is not limited to the emission of only pions, but
rather can produce the emission of hadrons with arbitrary mass. We demonstrate these capabilities by
training it on specially prepared PYTHIA hadronization outputs with an explicit infra-red (IR) cut-off.
In sec. 4 we discuss possible extensions and planned future work.

2 Architecture and method

Figure 1: An illustration of using NF as a generator in the hadronization chains. G is the generator,
which is in our case the NF. In principle any generative model, which generates the kinematics well
can be used.

We consider a simplified Lund string model to demonstrate the performance of our ML architecture.
Hadronization describes the combination of quarks and gluons into hadrons at the non-perturbative
scale. In the Lund string model, the quarks are connected via a QCD color string/tube; in particular
we are looking at a qiq̄i fragmentation event in the center-of-mass frame with quark-flavor index i
and initial energy E. The string breaks iteratively and emits a hadron h per break. In each step the
quark flavors and kinematics are conserved. Fig. 1 illustrates the architecture we are using to describe
the Lund string model.

FS is the simplified PYTHIA flavor selector, which takes as input the initial string quark-flavor
s1 and returns the emitted hadron flavor h1 and the new string-end flavor s2. G is the generator,
which samples the kinematics of the hadron and due to energy-momentum conservation, updates the
four momentum of the new string end. Here we can use NFs as the kinematics generator G. This
process repeats until the energy of the string falls below a predetermined cut-off value, Ecut, which
is set to 5 GeV in our case. Before each hadron emission, the string fragments are boosted to their
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center-of-mass frame using a Lorentz transformation Λ. The architecture is flexible such that we can
exchange components easily. In this section we discuss conditional NFs as a generative model for the
hadron kinematic.

2.1 NF as kinematic generator

NFs are ML architectures which perform a bijective transformation between two spaces, by first
sampling a random vector u from a simple distribution (usually a Gaussian) u ∼ π(u). The sample
is transformed by a neural network f to obtain a data point x from the desired and usually more
complicated distribution p(x), where f is designed to be invertable. We can calculate the density of x
by finding the corresponding random vector u by a change of variables:

p(x) = π(u)

∣∣∣∣det
(
∂f

∂u

) ∣∣∣∣−1

, (1)

where u = f−1(x). To use NFs as a generative model, one starts with a sample u from the base
distribution and uses eq. 1 to map to the target distribution. Autoregressive flows use a transformation
f(xi), where xi depends only on the previous coordinates x1, ..., xi−1, which leads to a triangular
Jacobian matrix, and subsequently results in the more efficient computation of the determinant.
To ensure the ability to learn high dimensional transformations with a complex target distribution,
multiple layers of these bijective transformations are used; in our case we use five. One can choose
different transformations as long as they are sufficiently expressive. In the results presented in this
paper we use masked autoregressive flows (MAF) [23] with an affine [24] transformation. However,
to decrease the sampling time one can use inverse autoregressive flows (IAF) [25].

2.2 Training Data

The training data is a set of PYTHIA generated first-hadron emissions for different initial string
energies. We can reduce our process to a two variable problem by aligning the z axis of the coordinate
system with the direction of the initial string and assuming axial symmetry in PYTHIA. We can then
reconstruct the complete four momentum of a particle with the two momentum components pz and
pT .

The NF is trained simultaneously on the pz and pT , which allows the NF to learn correlations
between the two variables, such that the training data set contains samples from a 2D distribution
of the transverse momentum and z component of the momentum xi = {p′(i)z,k , p

(i)
T,k}. In addition we

condition in each step on the initial string energy and the hadron mass. This allows us to generate
the kinematics for emissions with all possible hadron masses. The energy and mass conditions are
transformed in the range 0 < c < 1 as demonstrated in [22]. The loss function is the negative log
likelihood of the learned probability distribution p(x), which is minimized during the training process.
We use the nflows package1 [26] for the implementation and train for 5× 106 iterations.

To demonstrate the performance, we train the NF on data for masses ranging from 0.1 GeV to 1 GeV
and energies E = 100, 400, 700, 1000 GeV, such that the model can be provided with both a mass
and energy label. This can be extended to larger mass ranges, 0.1 GeV to 20 GeV, over which one
can cover any possible hadron emission.

3 Results

As one can see in fig. 11 the NF trained model is able to accurately reproduce first-emission kinematics
of PYTHIA for a hadronized quark anti-quark system in the center-of-mass frame of the string. In
addition, the NF is able to interpolate well for mass labels which were not included in the training, but
fall between the training labels, see app. A.2. The NF is also able to extrapolate to mass labels outside
the training range. In app. A.1 one can see the results for different labels we trained on and in app. A.2
are the results for mass labels that were not trained on, either interpolated or extrapolated. Fig. 3
shows the heat map of pz and pT for PYTHIA and NF generated kinematics, which demonstrates that
the NFs are able to learn correlations between the two variables.

1Corresponding github repo and licence can be found in: https://github.com/bayesiains/nflows
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Figure 2: The NF generated pz and pT distributions for first-hadron emissions with string energies of
(label 1) E = 100, 400, 700, 1000 GeV, and hadron masses of (label 2) m = 0.78 GeV, which the
NF was trained with, compared to the PYTHIA generated target distribution (grey), as well as the
ratios of the NF generated to PYTHIA generated distributions.

Figure 3: Heat map illustrating the correlation between pz and pT for the PYTHIA (left) and NF
(right) generated kinematics.

The model can be trained on mass labels corresponding to hadron masses ranging from 0.1 to 20 GeV.
With this range we can sample the kinematics for all physical hadrons that can be emitted since for
the kinematics only the mass of the hadron is needed to distinguish them.

In fig. 4 we show the average number of hadron multiplicities as a function of initial string energy,
using PYTHIA or MLHAD with NFs fragmentation chain. The updated version of MLHAD with NFs
shows greater agreement than the previous version utilizing the cSWAE architecture presented in [22]
(fig. 12).

4 Conclusion and Outlook

The updated version of MLHAD utilizing NF, appears to be well suited for modeling the non-
perturbative process of hadronization. This was demonstrated by training an NF architecture on
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Figure 4: Average number of hadrons produced in the hadronization chain as function of initial string
energy using MLHAD (orange) and PYTHIA (blue) for 2× 104 fragmentation chains and only pions
as emitted hadrons.

a simplified PYTHIA hadronization model, limited to string ends made out light quark flavors. It
overcomes the limitation of allowing only pions as emitted hadrons, presented in [22, 21], and is
able to simulate all possible hadron emissions. In addition, our NF is able to be trained on pz and pT
simultaneously, such that possible correlations between these two variables can be learned.

Due the architecture of the hadronization pipeline, see fig. 1, the NF model can be easily implemented
in the fragmentation chain. In fig 4 we generate a hadronization chain and compare the average
hadron multiplicity of PYTHIA with the ML model. The updated MLHAD version utilizing NFs
shows a better performance than the previous version. However, despite these encouraging results
from masked autoregressive flows (MAF), we may switch to a different NF in the future due to the
slow sampling speed of the MAF.
Another advantage of the presented architecture is that the exact probability distribution of the drawn
samples is known. Given the sample, one can compute the exact likelihood that would be generated
by the model. Future work will include uncertainty estimation of hadronization models.
Looking forward, the training of the ML architecture presented in this work will be performed on
physically accessible observables. Possible candidates can be found here [27–32]. Many of these
observable will be accessible due to open-data efforts from different collaborations. The presented
architecture will be used in a pipeline to perform training on experimental data. The code for MLHAD
can be found in https://gitlab.com/uchep/mlhad.
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Broader Impact

In high energy particle physics, characterizing the uncertainty of phenomenological models is critical
for interpreting results. To date, common hadronization models have not included uncertainty
estimates. This NF architecture will allow us to explore such uncertainties with a well-defined
methodology. While the resulting hadronization model may not be applicable to the larger community,
the methodology for interpreting the estimated uncertainty will provide an important benchmark
across a wide range of ML applications. Additionally, we will work towards interpretation of
the model for a specific physical process. Such interpretation and uncertainty estimation of ML
architectures will play a crucial role in understanding the ethical implications of broader-ranging ML
applications such as self-driving cars, parole determination, or healthcare.
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A Plots for different labels

A.1 Known labels

In fig. 5 to 8 one can see the results on labels, which the flow was not trained trained on.
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Figure 6

A.2 Unknown labels

In fig. 9 to 12 one can see the results on labeled trained on.
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