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1 Introduction
Unlocking the potential of nuclear fusion as an energy source would have profound impacts on the
world. Nuclear fusion is an attractive energy source since the fuel is abundant, there is no risk of
meltdown, and there are no high-level radioactive byproducts [Walker et al., 2020]. Perhaps the most
promising technology for harnessing nuclear fusion as a power source is the tokamak: a device that
relies on magnetic fields to confine a torus shaped plasma. While strides are being made to prove that
net energy output is possible with tokamaks [Meade, 2009], there are still crucial control challenges
that exist with these devices [Humphreys et al., 2015].

In this work, we focus on learning controls via offline model-based reinforcement learning for DIII-D,
a device operated by General Atomics in San Diego, California. This device has been in operation
since 1986, during which there have been over one hundred thousand “shots” (runs of the device).
We use approximately 15k shots to learn a dynamics model that can predict the evolution of the
plasma subject to different actuator settings. This dynamics model can then be used as a simulator
that generates experience for the reinforcement learning algorithm to train on. We apply this method
to train a controller that uses DIII-D’s eight neutral beams to achieve desired βN (the normalized
ratio between plasma pressure and magnetic pressure) and differential rotation targets. This controller
was then evaluated on the DIII-D device. This work marks one of the first efforts for doing feedback
control on a tokamak via a reinforcement learning agent that was trained on historical data alone.

2 Related Work
Offline Reinforcement Learning. Unlike standard reinforcement learning (i.e. online reinforcement
learning) settings, in which agents gather experience through interactions with the environment,
offline reinforcement learning attempts to learn a policy through logged, historical interactions from
possibly many different policies. This is an attractive setting since many real-world problems will
have logged interactions to leverage; however, the restriction of no additional observations usually
causes deep reinforcement learning algorithms designed for the online setting to fail because they
pick actions that are out of distribution for the dataset.

To combat this problem, offline reinforcement learning algorithms add in extra penalizations to ensure
that the optimization procedure chooses actions within the support of the dataset [Kumar et al., 2020,
Wu et al., 2019, An et al., 2021]. There have also been a number of successful model-based offline
reinforcement algorithms. These algorithms rely on the uncertainty in the dynamics models for
penalization [Yu et al., 2020, Kidambi et al., 2020]. In these papers the dynamics models are only
accurate for a handful of timesteps (see Appendix G of Yu et al. [2020]). We believe our setting is
unique from the environments tested in these papers since we are able to learn a dynamics model that
is accurate for entire shots.
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Figure 1: Replay of Shot 187076. Here, the model receives the first observations of βN and DR, but
then autoregressively predicts these values into the future. The faded lines are different samples of
the neural network parameterization, and the solid lines are the average over the different predictions.
Note that there are no faded lines for the power and torque plots since these were the inputs to the
model. The black dashed lines are the real observations.

Learning Controls for Tokamaks There has recently been a surge of interest in applying machine
learning for controls of tokamaks. Many of these works focus on predicting disruptions for avoidance
or safe shutdowns [Fu et al., 2020, Parsons, 2017, Rea et al., 2019, Boyer et al., 2021]; however, in
this work, we focus on control during stable operation scenarios. Under this scenario, Char et al.
[2019] uses contextual bayesian optimization to find controls that balance increasing βN and keeping
the plasma stable. In terms of modeling dynamics, Abbate et al. [2021] used a convolutional neural
network to model the evolution of the plasma’s profiles, and this was later used for model predictive
control [Abbate et al., 2023].

There have also been some interest in applying reinforcement learning to fusion control. Seo et al.
[2021, 2022] learned a dynamics model for the KSTAR tokamak, and used reinforcement learning for
tracking several scalar values including βN ; however, they used this policy to generate feedforward
controls only. Wakatsuki et al. [2021] trained a policy to do ion temperature gradient control. This
policy was both trained and tested in the TOPICS simulator for the JT-60 tokamak. In Degrave et al.
[2022], the authors leverage a simulator to learn a controller for the plasma’s shape on Tokamak a
Configuration Variable [Coda et al., 2019]. Our work differs not only in the goal and actuators used,
but also from the fact that we leverage historical data exclusively. The plasma shape can be modeled
much more precisely and cheaply than other aspects of the plasma, and for this reason, we focus on
learning a simulator from logged data.

3 Method
3.1 The Dynamics Model
States and Actuators. In our work, we assume that the state of the plasma can be characterized by
three scalar values and five so-called “profiles”. The scalar states consist of the line-averaged electron
density, the internal inductance, and βN , which is the normalized ratio between plasma pressure and
magnetic pressure. βN is an important quantity as it can be used as a rough economic indicator of
efficiency. Radial profiles of the plsama rotation, pressure, temperature, electron density, and the
safety factor, known as “q”, are also used. The q profile is the number of toroidal transits per poloidal
transit of a magnetic fieldline. Following Boyer and Chadwick [2021], we reduced the dimensionality
of these profile states by using principal component analysis (PCA). We find that we can explain 99%
of the variance in the data by using two principal components for the q and pressure profiles, and
by using four components for the rest of the profiles. In total, the state space is 19-dimensional (3
dimensions for the scalar states and 16 dimensions for the profile states).

DIII-D has eight neutral beams that inject particles into the core of the plasma. Because two of these
beams can be oriented in the opposite toroidal direction as the other six beams, the total power and
torque injected, summed across all beams, can be decoupled. In addition to the total power and
torque, the model takes as input the current target and density target which are tracked using the loop
coil and gas valves respectively. Lastly, we assume that the control of the plasma’s shape is good
enough that we can treat the shape itself as an actuator. We characterize the plasma shape by four
scalar values: the elongation of the plasma, the top triangularity, the bottom triangularity, and the
minor radius. In total the actuator space is 8-dimensional.

Dynamics Model and Training. The dynamics model is a simple fully connected neural network
that takes in the state of the plasma at time t, the difference in states at time t and t−∆t, the actuator
settings at time t, and the actuator settings at time t +∆t. The model then predicts the change in
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states from time t to time t+∆t. Here we set ∆t = 100 ms. The dataset consists of 15,534 shots,
resulting in 268,702 time steps. As shown by previous works [Chua et al., 2018], it is important to
have uncertainty estimates as part of the dynamics model. We incorporate uncertainty by learning a
subspace of good network parameters instead of a single good parameterization [Wortsman et al.,
2021, Benton et al., 2021]. In particular, we use an ensemble of five networks to learn a simplex of
good network parameters following the procedure described in Wortsman et al. [2021]. We repeat
this training procedure five times to learn five different simplices. By making a uniform draw from
this collection of network parameters, we can sample a new possibility for the dynamics.

To do hyperparameter tuning and evaluation, we take the most recent 10% of shots as our test set.
Our tuning procedure targets high explained variance (EV) for one-step predictions. After performing
grid search, we settled on a model with 4 hidden layers of 512 units, and a learning rate of 3e-4.
When learning the simplex, we encourage diversity by adding a cosine similarity penalizer to the loss
function (see Wortsman et al. [2021]), and we find that a coefficient of 5 to this penalty gets the best
results. Averaged across five seeds and one hundred samples from the simplex for each seed, these
mean predictions achieve an EV score of 0.46 for βN , 0.43 for the first rotation PCA component, and
0.33 averaged across all output signals. We use the Uncertainty Toolbox library Chung et al. [2021]
to evaluate our ensemble’s predictive uncertainty. We find that our model tends to be overconfident
and achieves a miscalibration area of 0.26 for βN , 0.25 for the first rotation PCA component, and
0.297 averaged across all predictions. We believe that part of the reason these scores are poor is that
the future shots in the test set are meaningfully different. Qualitatively, the model often captures the
trends of the state quite well. Figure 1 shows the replay for shot 187076, which was not seen during
training. This shot is significantly unique from other shots in the dataset in that there is a drastic drop
then increase of both power and torque.

3.2 Learning a Controller
In this work, we learn a controller that sets the total power and torque of the neutral beams in order to
achieve a specified target βN and differential rotation (DR). Specifically in this work, DR refers to
the difference in the rotation profile at the locations where q = 1 and q = 2. This is an important
quantity of interest as it is hypothesized that higher DR results in a more stable plasma [Bardoczi
et al., 2021, Tobias et al., 2016]. However, note that, unlike βN , this quantity is harder to predict
since it relies on accurate predictions of both the rotation and q profiles.

The learned dynamics model is used to form a simulator that can be used to collect experience.
Because not all quantities are able to be observed in real time, we form a partially observable Markov
decision process (POMDP) where the agent only observes the current and previous values of βN ,
DR, the total power injected, and the total torque injected. The controller then specifies the next
setting of the total power and torque. The reward function is simply the negative sum of the absolute
difference between the current observations and the target values in normalized space. We use states
from the historical shots for start states, and we replay the actuator settings for that shot since the
reinforcement learning agent only has control over the beams. For each episode in the POMDP, new
βN and DR targets are sampled, and a new parameterization for the dynamics model is drawn.

We use PPO [Schulman et al., 2017] with a policy and value network with 2 hidden layers consisting
of 500 units each. Policy evaluation in offline reinforcement learning continues to be a challenging
problem. In order to tune hyperparameters and ultimately select the best policy, we decided on a
procedure in which we have two dynamics models: one used for training and one used for evaluation.
The only difference between the two models is that the model used for evaluation was trained using
both the training and testing set. Additionally, for the start state selection and actuator replays, we
reserve some historical shots that are used only during the evaluation period.

4 Experiment
We implemented our trained policy into DIII-D’s plasma control system (PCS) [Margo et al., 2020].
We use the Keras2C library [Conlin et al., 2021] in order to transfer our policy network to a version
of C that does not rely on external libraries. Because the policy only decides the total power and
torque, we use the algorithm presented in Boyer et al. [2019], which decides the duty cycles of each
of the eight beams to hit the requested power and torque targets. For inputs to the policy, we rely on
the profile fitting algorithm [Shousha et al., 2023] and the charge exchange recombination diagnostic
system [Gohil et al., 1991]. The policy sends requests for updates to the beams roughly every 10 ms.
During our testing session, we were able to test the βN and DR tracking separately. We used shot
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Figure 2: Experiment Shots. The top four plots show the βN , DR, total power, and total torque
during both shot 191614 (feedforward control) and the reference shot 164987 (red). These values are
smoothed when needed and the original, unsmoothed values are shown as faded lines. The DR values
are taken after doing preprocessing and dimensionality reduction via PCA. For the bottom plots, the
left pair of plots shows the experiment controlling the power to hit βN targets, while the right pair of
plots shows controlling the torque injected to hit DR targets. In each pair, we show the requested
amount of power or torque requested by our controller vs the actual value achieved.

164987 (shots are labeled ) as a reference shot, and the actuators besides the beams were mostly used
from this shot.

Feedforward Control To disentangle the predictive power of the dynamics model from the policy
learning procedure, we used the dynamics model only to prepare feedforward control for the neutral
beams. In this feedforward control of the neutral beams, power and torque are ramped up to constant
values that are maintained throughout the remainder of the shot. To find these constant power and
torque values, a two-dimensional grid search was performed to find the configuration with the best
cumulative rewards. For the targets of βN = 1.75 and DR = 40 krad/s, our optimization procedure
found that setting the total power to 3.6 MW and the total torque to 2.1 Nm was best. As shown in
Figure 2, the choice of these actuators resulted in hitting the βN target remarkably well. Although
the DR achieved was lower than the target, one can see that it moved closer to the target compared to
the reference shot. For reference, DR has a standard deviation of 35.2 and an interquartile range of
47.2 amongst all shots in our dataset, so the error between the target and the value achieved is not as
bad as it may appear.

Feedback Control Next, we tested the learned policy’s ability to do feedback control. We started by
having the controller track increasing βN targets. Because βN primarily relies on the power injected,
we use the policy to control the injected power only and set the total torque to be 2 Nm throughout
the shot. For shot 191611 in Figure 2, one can see that the controller increases the power in order to
hit the target values. The last target is overshot slightly and some oscillatory behavior occurs. Upon
further inspection, it seems that this was likely due to a problem where the magnitude of change in
power was greater than that requested by the controller (4500 ms onward). Near the end of the shot,
the plasma begins to disrupt and all control is lost. While there are pre-existing controllers on DIII-D
that can hit βN targets more reliably than this, we still believe that this is a step in the right direction
for showing model-based reinforcement learning’s value in learning controls.

Unlike βN tracking, there is no other controller in the DIII-D PCS that specifically tracks the
difference in rotation between the q = 1 and q = 2 surfaces. To test our controller’s ability to do so,
we set a series of decreasing DR targets for the controller to achieve using only total torque (power
is set at a constant value of 5 MW). The controller is unable to track the DR targets nearly as well
as the βN targets. While there are some instances of the policy doing the right thing (e.g. torque
is decreased at time 4000 ms time to drop DR to the target), the policy shortly after observes DR
dropping too quickly and raises torque back up again (shot 191616 in Figure 2). We believe that this
is due to the fact that our dynamics model usually does not predict such severe changes in DR.
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5 Discussion
In this work, we presented the first offline model-based reinforcement learning controller for a
tokamak. These results show the first steps towards being able to learn tokamak controllers with
reinforcement learning using logged data alone. Furthermore, through our feedforward controls, we
have demonstrated the predictive ability of our dynamics models for control. Going forward, we
believe that there is an opportunity to leverage these models to discover new, performant scenarios
for the plasma. We also found that our setting was unlike those reasoned in most model-based offline
reinforcement learning papers. The key diference was that a reasonable dynamics model was able
to be learned from the data and used to generate experience. We believe there is an opportunity for
more research in this setting, i.e. when there is a large, undirected dataset in which one can learn a
reasonable dynamics model.

Broader Impact This work further investigates what impacts reinforcement learning can have on
tokamak control. While reinforcement learning itself may have both positive and negative impacts to
society depending on the application, making nuclear fusion energy a reality would be overwhelmingly
positive. Having nuclear fusion as an energy source would help the world cut back on fossil fuels. At
the same time, it does not produce the same hazardous biproducts as current nuclear fission reactors.
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