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Abstract

Molecular dynamics simulations of solidification phenomena require accurate
representations of solid and liquid phases, making classical force fields often
unsuitable. On the other hand ab initio simulations are infeasible to observe rare
nucleation events. Being able to recreate ab initio quality forces, at scalability and
efficiency near that of classical force fields, simulation of solidification processes
is a promising area of application for machine-learned interatomic force fields.
In a neural network potential the choice of input features plays a vital part in its
performance. Here we propose embedded feature selection, using the adaptive
group lasso technique, for identifying and removing irrelevant atomic fingerprints.

1 Background

An understanding of crystal nucleation is of great importance to controlling the properties and
microscopic structure of materials [1]. Being a microscopic phenomena, Molecular Dynamics (MD)
is a natural framework for the study of homogeneous nucleation [2]. A problem arises, however, in
the need to accurately model the interatomic interactions simultaneously in both solid and liquid
phases. Classical force fields [3, 4] are fast and allow for the study of very large systems containing up
to several millions of atoms, but they are often inaccurate and lacking in transferability. In contrast ab
initio simulations [5], based on density functional theory (DFT) [6], allow for a much more accurate
description, and can be applied to any phase of matter and any combination of elements, but at a
much higher computational cost, and limited to systems of merely a few hundred atoms. Nucleation
events, however, necessitate long simulations of large systems [2].

Machine learning has found many applications within material science [7], being used for a variety
of tasks such as identification of atomic structures [8], prediction of material properties [9, 10],
among others. The use of machine-learned interatomic potentials (MLIPs), trained via supervised
approaches, allows for bridging the gap between classical force fields and ab initio methods. By
training a MLIP on data from ab initio simulations it is possible to obtain force predictions at ab initio
accuracy, at a computational performance approaching that of classical force fields. This opens up
new possibilities to study homogeneous nucleation at the atomic scale.

A crucial step in developing a MLIP in a High-Dimensional Neural Network Potential (HDNNP) set-
ting [11] is to choose appropriate atomic descriptors [12] to represent accurately atomic environments
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Figure 1: The High-Dimensional Neural Network Potential approach. a) Illustration of a local
neighborhood of radius rc around a central atom. b) Illustration of the HDNNP architecture.

through a set of features (atomic fingerprints). Feature selection offers a solution to optimize this
choice. Previous works [13] have utilized filter methods, which do not explicitly take into account
model predictions. This is in contrast to wrapper methods, such as naive forward selection [14],
genetic algorithms [15], among others, and embedded methods such as the LASSO [16], and SISSO
[17]. Here the objective is to develop an Adaptive Group Lasso (AGL) technique, allowing to select
features during training. To our knowledge our work is the first to apply embedded feature selection
to the HDNNP architecture, and to the design of MLIPs for MD simulations.

2 Method

The energy of an atom in a material typically depends on its environment within a few neighbor atom
shells, within some cutoff rc illustrated in Figure 1a. It is therefore natural to write the total energy as
a sum of local atomic contributions

Etotal =

Natoms∑
i=1

Ei . (1)

From this decomposition, a HDNNP is composed of a sum of Natoms NNPs associating each local
environment with Ei, as in Figure 1b. The atomic NNPs are trained indirectly by fitting the HDNNP
to the known total energy obtained from ab initio simulation. It can then be differentiated with respect
to the atomic positions to obtain force predictions. The inputs to the HDNNP is the atomic positions,
which are transformed into a fingerprint vector Gi for each atom. These are then fed into the atomic
NNP to predict the atomic energies, which are summed over to obtain the total energy.

In choosing atomic descriptors there are many options, and for a brief overview of some common
types, we refer to [18]. In this work we specifically use the Behler-Parrinello symmetry functions
[19], which is the traditional choice for HDNNPs. Specifically we use the G2 and G5 symmetry
functions defined by

G2
i =

∑
j

e−η(Rij−Rs)
2

fc(Rij) (2)

G5
i = 21−ζ

∑
j,k

(1 + λ cos θijk)
ζe−η(R

2
ij+R

2
ik+R

2
jk)fc(Rij)fc(Rik)fc(Rjk) . (3)

Here, Rij is the distance between atoms i and j, θijk is the angle between atoms j and k with respect
to atom i, and fc(Rij) is defined as 0 for Rij > rc and for Rij < rc as a polynomial going smoothly
to 0 at the neighborhood cutoff Rij = rc. Other parameters such as η, ζ , etc., allow for defining a set
of features by assigning these parameters different values.

A well known embedded feature selection method for linear models is the LASSO [16], in which
L1 regularization is applied to the input parameters of the model, however this approach is not
immediately suitable for Neural Networks. LassoNet [20] was recently proposed, adding bypass
connections for each feature, and penalizing by the L1 norm of the bypass weights. Another
alternative is to consider the Group Lasso (GL), which groups all the input weights of each feature
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Figure 2: Validation objective for a sequence of HDNNP models, plotted against the number of
selected input features obtained by varying the regularization strength λ, starting from: a) 22 hand-
picked features. b) 329 features.

and regularizes with the euclidean norm of each such collection of weights. The following objective
function is thus optimized:

objective(W ) = L(W ) +
λ

D

D∑
i=1

|w0
i,[:]|, (4)

where W is the set of trainable weights, L(W ) is a suitable loss function, in our case Mean Square
Error (MSE) with L2 regularization, w0

i,[:] is the vector of weights connecting input i to the first
hidden layer, D is the number of features, and λ is a hyperparameter. As the euclidean norm |w0

i,[:]|
goes to zero only if all components of w0

i,[:] vanish, this ensures that the input weights for each
given feature is selected or discarded collectively. This objective function can be optimized using a
proximal gradient descent algorithm [21], alternatively one can use a smoothed version to account
for the norm being non-smooth at zero as in [22].

The basic GL approach can be further improved upon by using an adaptive penalty as in [23]. In the
adaptive approach an initial training is performed using the standard GL penalty given by (4). This
initial training is used to obtain an initial estimate for the weights, ŵ. With these initial estimates the
training is repeated using an adaptive penalty, optimizing

objective(W ) = L(W ) +
λ

D

D∑
i=1

|w0
i,[:]|
|ŵ0
i,[:]|

. (5)

The use of AGL over GL in NN applications is advocated by [23], where the AGL algorithms is also
shown to be feature-selection consistent. We opt for AGL over LassoNet, because of adaptiveness,
simpler implementation and one fewer hyperparameter. Although the AGL sometimes over-shrinks
the correct features, it has been shown to be on par with LassoNet in numerical experiments[23]. This
is in contrast to GL, which frequently fails to deselect insignificant features, and underperformed
compared to both other methods.

3 Results

The training of HDNNPs were done using our own code, with MD simulations being performed
in LAMMPS [24] making use of the ml-hdnnp plugin provided by N2P2 [25]. The dataset used to
train the networks was sampled from ab initio trajectories for Aluminium, obtained using VASP [26].
In our experiments we fix our atomic NNPs to have two hidden layers of 10 nodes each, with tanh
activation, focusing on Aluminium as an example system.

The feature selection process in our first setting is as follows, we pick a starting set of 22 fingerprints,
identical to the ones in [27], which uses the same network architecture. These fingerprints were
originally picked out by hand following the principles given in [12], and are known to be adequate,
but the question is if some of them can be discarded. We train a sequence of models, with increasing
values of regularization parameter λ starting from 0.005, resulting in decreasing number of input
features, as depending on λ unnecessary ones will have their weights vanish. Figure 2a shows the
validation objectives for such a sequence of models, plotted against the number of selected features.

3



Table 1: Total number of features (D), number of angular features (DG5), average test errors with
standard deviation, and computational performance, for features selected from a hand-picked set.

D DG5 MSE (eV2) RMSE (meV/atom) Benchmark (timesteps/s)

22 10 0.658± 0.079 3.16± 0.193 0.211
10 3 0.702± 0.094 3.27± 0.223 0.410
6 1 1.39± 0.25 4.59± 0.42 0.581

Table 2: Total number of features (D), number of angular features (DG5), average test errors with
standard deviation, and computational performance, for features selected from a large set.

D DG5 MSE (eV2) RMSE (meV/atom) Benchmark (timesteps/s)

64 11 0.250± 0.005 1.68± 0.02 0.156
32 5 0.329± 0.033 2.24± 0.11 0.267
16 2 0.329± 0.039 2.23± 0.13 0.453
8 1 0.893± 0.099 3.68± 0.20 0.579

This plot shows the typical behavior we observed, with a flat region that can be interpreted as the
model being able to reduce the AGL penalty by discarding unnecessary features without increasing
the loss, and sharp increases that result from the model being forced to either discard a useful feature
or accept a higher AGL penalty.

We observe 10 features to be a good choice, with 6 being a possible candidate as well. For each
feature set we train four models on different random dataset splits of 80% training and 20% validation
data, using only the selected features. These models are evaluated on a separate test set, with the
resulting average MSE and Root MSE (RMSE) being shown in table 1. We also perform, for each
feature set, a short MD simulation of 1000 timesteps, using the best performing model, all starting
from the same initial state drawn from a previous simulation of 10976 atoms in an undercooled liquid
state. The number of simulated timesteps per second, running on a single 2.5 GHz Intel Cascade
Lake 6248 cpu core, is shown in the last column of table 1. It is noteworthy that we manage to reduce
the number of fingerprints by more than half, without any significant reduction in the accuracy of
the potential, and almost doubling the computational speed. Further, we observed a bias towards
selecting radial (G2) features. This might be of a physical origin, noting that for Aluminium one
would expect a relatively simple angular structure. As a matter of fact, Aluminium is a polyvalent
metal with an s-p electronic structure, adopting a close packed short range order, maximizing the
number of nearest neighbors.

In order to test the approach in a more general setting we create a large set of 269 radial fingerprints,
and 60 angular ones, containing the 22 used in the previous example. Such a large set of fingerprints
is unsuitable for HDNNPs in practice, with most fingerprints containing redundant information. We
apply the same feature selection procedure as before, with the resulting plot of validation objective
against number of features being shown in figure 2b. The first thing of note is that, although the
overall structure is the same as in figure 2a, we select in general more features. Furthermore, we
found there to be a large degree of correlation between the selected features. From this regularization
path we select a model with 64 features, and retrain it without regularization. We also create smaller
sets by picking out every other, every 4th, and every 8th feature, respectively, creating sets of 32, 16,
and 8 fingerprints. Table 2 shows average test performance, and computational speed, all evaluated
as previously. At a first glance the benchmarks might seem surprisingly good compared to the ones
in table 1, but this will also depend on the relative number of angular features, which is lower here,
as well as how much of the fingerprint calculations can be cached and reused between different
fingerprints, as detailed in [25]. We note that despite the ad hoc procedure we used to shrink the 64
feature set, we still manage to outperform the models selected from the hand-picked set. Although
the selection of features is stochastic, and we observe some difference in the selected features between
various runs and dataset splits, we did find the selection to be fairly stable.
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4 Outlook

We have applied the AGL to perform feature selection for atomic fingerprints used in HDNNPs
for MD simulations of Aluminium. While we observed promising results in reducing the size of a
hand-picked set of atomic fingerprints, when attempting to select from a larger set of fingerprints the
method failed to reduce the size to the same extent. We hypothesize that this is due to the large degree
of correlations between the fingerprints in this large set, and show that a subset of these can still
outperform the features in the hand-picked set. Future work will be necessary to overcome this issue,
possibly by the addition of an extra penalty term penalizing correlated features as in [28]. Additional
work will be aimed at systems with different physical characteristics, such as Boron and Lennard-
Jones matter, to examine the effect of physical properties on what features are selected. Further, we
look to apply HDNNPs to the study of solidification in binary and multi-component systems, where
the AGL could serve as a way to counteract the increased number of atomic descriptors needed to
train a multi-species potential.
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Broader Impact

If broadly adopted, our method, or similar ones, can reduce the computational effort of MD simulations with
HDNNPs, contributing to greater energy efficiency. Reducing the number of inputs could make interpretation
of the potential easier, contributing to explainability of potentials which have traditionally been regarded as
black boxes. Further, more efficient simulations open up for a deeper understanding of solidification phenomena,
and nucleation processes, which is a vital component of designing better materials for practical applications.
For the specific case of aluminium, this strong yet lightweight material finds many practical uses in transport,
wind-power generation, among others.
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